2D layered materials – electronic interaction phenomena

Research picture

Description / Outline

2D layered materials such as graphene, black phosphorus, SnSe, Sb2Te3 etc. are semi-metals or semiconductors, which due to their special electronic structure (e.g. Dirac and/or Weyl-like fermionic system) show a range of intriguing properties not occurring in conventional semiconductors and (semi)metals.
These properties are used in the context of, for instance, layer-number controlled band gaps, Dirac-Fermion optics, valleytronics and spintronics as well as include quantum and topology phenomena.
Our focus is on the investigation of phenomena that result from the various interactions within such low-dimensional systems. These include, for example, conductivity transitions due to layer-layer interactions not correlated with the band gap, Mie-like and valley-sensitive fermion scattering in periodic (magnetic) potentials, the formation of (macroscopic) quantum phases due to controllable effective Coulomb interaction as well as topological singularities in parity-breaking arrangements of layers.
Experimentally, we use physical and chemical methods to achieve and control (local and global) modification of the interactions between fermions in the layered materials. We investigate our own produced samples and components mainly by means of electrical transport.

Faculty/Institution

Contacts