Machine learning-enhanced random laser sensing: unveiling scattering anisotropy for optical property characterization

Ni D, Klämpfl F, Schmidt M, Hohmann M (2025)


Publication Type: Conference contribution

Publication year: 2025

Journal

Publisher: SPIE

Book Volume: 13935

Conference Proceedings Title: Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Event location: Munich, DEU

ISBN: 9781510698079

DOI: 10.1117/12.3098437

Abstract

We apply machine learning to enhance diffuse reflectance spectroscopy-random laser sensing, revealing that anisotropy factor g dominates random laser emission in the subdiffusive regime.

Authors with CRIS profile

How to cite

APA:

Ni, D., Klämpfl, F., Schmidt, M., & Hohmann, M. (2025). Machine learning-enhanced random laser sensing: unveiling scattering anisotropy for optical property characterization. In Davide Contini, Yoko Hoshi, Thomas D. O'Sullivan (Eds.), Progress in Biomedical Optics and Imaging - Proceedings of SPIE. Munich, DEU: SPIE.

MLA:

Ni, Dongqin, et al. "Machine learning-enhanced random laser sensing: unveiling scattering anisotropy for optical property characterization." Proceedings of the 10th Diffuse Optical Spectroscopy and Imaging, Munich, DEU Ed. Davide Contini, Yoko Hoshi, Thomas D. O'Sullivan, SPIE, 2025.

BibTeX: Download