Inherently interpretable machine learning: A contrasting paradigm to post-hoc explainable AI (Forthcoming)

Zschech P, Weinzierl S, Kraus M (2025)


Publication Language: English

Publication Type: Journal article, Original article

Publication year: 2025

Journal

Pages Range: 1 - 19

URI: https://link.springer.com/article/10.1007/s12599-025-00964-0

DOI: https://doi.org/10.1007/s12599-025-00964-0

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Zschech, P., Weinzierl, S., & Kraus, M. (2025). Inherently interpretable machine learning: A contrasting paradigm to post-hoc explainable AI (Forthcoming). Business & Information Systems Engineering, 1 - 19. https://doi.org/https://doi.org/10.1007/s12599-025-00964-0

MLA:

Zschech, Patrick, Sven Weinzierl, and Mathias Kraus. "Inherently interpretable machine learning: A contrasting paradigm to post-hoc explainable AI (Forthcoming)." Business & Information Systems Engineering (2025): 1 - 19.

BibTeX: Download