Godé H, Kruse C, Angersbach R, Köstler H, Bauerheim M, Rüde U (2025)
Publication Type: Conference contribution
Publication year: 2025
Publisher: Springer Science and Business Media Deutschland GmbH
Book Volume: 15581 LNCS
Pages Range: 174-189
Conference Proceedings Title: Lecture Notes in Computer Science
ISBN: 9783031857027
DOI: 10.1007/978-3-031-85703-4_12
We present a comprehensive comparison of the multigrid method and the UNet architecture for solving Poisson’s equation. Those two methods show a lot of similarity and also have the very interesting characteristic that their solving time should scale linearly with the number of mesh nodes. Nevertheless, for Poisson’s equation, an analysis of the number of floating-point operations demonstrates that the multigrid V-Cycle should be faster than the UNet. We have realized a practical comparison of the two methods solving time for different number of mesh nodes on the same computation nodes using GPU.
APA:
Godé, H., Kruse, C., Angersbach, R., Köstler, H., Bauerheim, M., & Rüde, U. (2025). Comparison of Multigrid and Machine Learning-Based Poisson Solvers. In Roman Wyrzykowski, Jack Dongarra, Ewa Deelman, Konrad Karczewski (Eds.), Lecture Notes in Computer Science (pp. 174-189). Ostrava, CZ: Springer Science and Business Media Deutschland GmbH.
MLA:
Godé, Hadrien, et al. "Comparison of Multigrid and Machine Learning-Based Poisson Solvers." Proceedings of the 15th International Conference on Parallel Processing and Applied Mathematics, PPAM 2024, Ostrava Ed. Roman Wyrzykowski, Jack Dongarra, Ewa Deelman, Konrad Karczewski, Springer Science and Business Media Deutschland GmbH, 2025. 174-189.
BibTeX: Download