Ultrasound-based Eigenfrequency Analysis to Determine Material Parameters of Tissue Mimicking Phantoms

Heim C, Huber C, Ullmann I, Lyer S, Rupitsch SJ (2024)


Publication Type: Journal article

Publication year: 2024

Journal

Book Volume: 10

Pages Range: 288-290

Issue: 4

DOI: 10.1515/cdbme-2024-2070

Abstract

A  modern  area  of  research  in  cancer  treatment  is magnetic drug targeting  (MDT) with superparamagnetic iron oxide  nanoparticles  (SPIONs).  In  order  to  understand  the processes  involved  in  MDT  in  more  detail  and  to  be  able  to perform  this  therapy  as efficientlyas  possible,  a  monitoring system  for  thespatialdistribution  of  SPIONs  in  biological tissue  is  required.  One  approach  is  to  use  magnetomotive ultrasound  (MMUS)  to monitorthe spatial distribution  over time.  However,  the spatial distributionof SPIONs cannot  be quantitatively  determined applyingbasic  MMUS  algorithms. Therefore, MMUS has been extended bya simulation part to quantitatively  determine  the spatial distributionof SPIONs. This extendedMMUS   algorithm requires   the   material parametersand the geometry of the target tumorous tissue. In this     contribution,we     describe     anultrasound-based eigenfrequency  analysiscombined  with  an iterative  inverse simulation-based    methodto    determine    the    mechanical parameterYoung's  modulus oftissue  mimicking  phantoms.The presentedapproachyields a goodestimate of the Young's modulus compared to the result fromacompression test.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Heim, C., Huber, C., Ullmann, I., Lyer, S., & Rupitsch, S.J. (2024). Ultrasound-based Eigenfrequency Analysis to Determine Material Parameters of Tissue Mimicking Phantoms. Current Directions in Biomedical Engineering, 10, 288-290. https://doi.org/10.1515/cdbme-2024-2070

MLA:

Heim, Christian, et al. "Ultrasound-based Eigenfrequency Analysis to Determine Material Parameters of Tissue Mimicking Phantoms." Current Directions in Biomedical Engineering 10 (2024): 288-290.

BibTeX: Download