VAE-based latent-space classification of RNO-G data

Glüsenkamp T, Aguilar JA, Allison P, Besson D, Bishop A, Botner O, Bouma S, Buitink S, Castiglioni W, Cataldo M, Clark BA, Coleman A, Couberly K, Dasgupta P, de Kockere S, de Vries KD, Deaconu C, DuVernois MA, Eimer A, Glaser C, Hallgren A, Hallmann S, Hanson JC, Hendricks B, Henrichs J, Heyer N, Hornhuber C, Hughes K, Karg T, Karle A, Kelley JL, Korntheuer M, Kowalski M, Kravchenko I, Krebs R, Lahmann R, Lehmann P, Latif U, Laub P, Liu CH, Mammo J, Marsee MJ, Meyers Z, Mikhailova M, Michaels K, Mulrey K, Muzio M, Nelles A, Novikov A, Nozdrina A, Oberla E, Oeyen B, Plaisier I, Punsuebsay N, Pyras LM, Ryckbosch D, Schlüter F, Scholten O, Seckel D, Seikh MF, Smith D, Stoffels J, Southall D, Terveer K, Toscano S, Tosi D, Van Den Broeck DJ, van Eijndhoven N, Vieregg AG, Vischer J, Welling C, Williams DR, Wissel S, Young R, Zink A (2024)


Publication Language: English

Publication Type: Conference contribution

Publication year: 2024

Journal

Publisher: Sissa Medialab Srl

Series: Proceedings of Science

Book Volume: 444

Pages Range: 1056

Conference Proceedings Title: Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023)

Event location: Nagoya JP

DOI: 10.22323/1.444.1056

Abstract

The Radio Neutrino Observatory in Greenland (RNO-G) is a radio-based ultra-high energy neutrino detector located at Summit Station, Greenland. It is still being constructed, with 7 stations currently operational. Neutrino detection works by measuring Askaryan radiation produced by neutrino-nucleon interactions. A neutrino candidate must be found amidst other backgrounds which are recorded at much higher rates—including cosmic-rays and anthropogenic noise—the origins of which are sometimes unknown. Here we describe a method to classify different noise classes using the latent space of a variational autoencoder. The latent space forms a compact representation that makes classification tractable. We analyze data from a noisy and a silent station. The method automatically detects and allows us to qualitatively separate multiple event classes, including physical wind-induced signals, for both the noisy and the quiet station.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Glüsenkamp, T., Aguilar, J.A., Allison, P., Besson, D., Bishop, A., Botner, O.,... Zink, A. (2024). VAE-based latent-space classification of RNO-G data. In Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023) (pp. 1056). Nagoya, JP: Sissa Medialab Srl.

MLA:

Glüsenkamp, Thorsten, et al. "VAE-based latent-space classification of RNO-G data." Proceedings of the 38th International Cosmic Ray Conference, ICRC 2023, Nagoya Sissa Medialab Srl, 2024. 1056.

BibTeX: Download