Estimating the coincidence rate between the optical and radio array of IceCube-Gen2

Abbasi R, Ackermann M, Adams J, Agarwalla SK, Aguilar JA, Ahlers M, Alameddine JM, Amin NM, Andeen K, Anton G, Argüelles C, Ashida Y, Athanasiadou S, Audehm J, Axani SN, Bai X, Balagopal AV, Baricevic M, Barwick SW, Basu V, Bay R, Becker Tjus J, Beise J, Bellenghi C, Benning C, BenZvi S, Berley D, Bernardini E, Besson DZ, Bishop A, Blaufuss E, Blot S, Bohmer M, Bontempo F, Book JY, Borowka J, Boscolo Meneguolo C, Böser S, Botner O, Böttcher J, Bouma S, Bourbeau E, Braun J, Brinson B, Brostean-Kaiser J, Burley RT, Busse RS, Butterfield D, Campana MA, Carloni K, Carnie-Bronca EG, Cataldo M, Chattopadhyay S, Chau N, Chen C, Chen Z, Chirkin D, Choi S, Clark BA, Clark R, Classen L, Coleman A, Collin GH, Conrad JM, Cowen DF, Dasgupta B, Dave P, Deaconu C, De Clercq C, De Kockere S, DeLaunay JJ, Delgado D, Deng S, Deoskar K, Desai A, Desiati P, de Vries KD, de Wasseige G, DeYoung T, Diaz A, Díaz-Vélez JC, Dittmer M, Domi A, Dujmovic H, DuVernois MA, Ehrhardt T, Eller P, Ellinger E, El Mentawi S, Elsässer D, Engel R, Erpenbeck H, Evans J, Evans JJ, Evenson PA, Fan KL, Fang K, Farrag K, Farrag K, Fazely AR, Fedynitch A, Feigl N, Fiedlschuster S, Finley C, Fischer L, Flaggs B, Fox D, Franckowiak A, Fritz A, Fujii T, Fürst P, Gallagher J, Ganster E, Garcia A, Gerhardt L, Gernhaeuser R, Ghadimi A, Giri P, Glaser C, Glauch T, Glüsenkamp T, Goehlke N, Goswami S, Grant D, Gray SJ, Gries O, Griffin S, Griswold S, Guevel D, Günther C, Gutjahr P, Haack C, Haji Azim T, Hallgren A, Halliday R, Hallmann S, Halve L, Halzen F, Hamdaoui H, Ha Minh M, Hanson K, Hardin J, Harnisch AA, Hatch P, Haugen J, Haungs A, Heinen D, Helbing K, Hellrung J, Hendricks B, Henningsen F, Henrichs J, Heuermann L, Heyer N, Hickford S, Hidvegi A, Hignight J, Hill C, Hill GC, Hoffman KD, Hoffmann B, Holzapfel K, Hori S, Hoshina K, Hou W, Huber T, Huege T, Hughes K, Hultqvist K, Hünnefeld M, Hussain R, Hymon K, In S, Ishihara A, Jacquart M, Janik O, Jansson M, Japaridze GS, Jeong M, Jin M, Jones BJ, Kalekin O, Kang D, Kang W, Kang X, Kappes A, Kappesser D, Kardum L, Karg T, Karl M, Karle A, Katori T, Katz U, Kauer M, Kelley JL, Khatee Zathul A, Kheirandish A, Kiryluk J, Klein SR, Kobayashi T, Kochocki A, Kolanoski H, Kontrimas T, Köpke L, Kopper C, Koskinen DJ, Koundal P, Kovacevich M, Kowalski M, Kozynets T, Krauss CB, Kravchenko I, Krishnamoorthi J, Krupczak E, Kumar A, Kun E, Kurahashi N, Lad N, Lagunas Gualda C, Larson MJ, Latseva S, Lauber F, Lazar JP, Lee JW, Leonard DeHolton K, Leszczyńska A, Lincetto M, Liu QR, Liubarska M, Lohan M, Lohfink E, LoSecco J, Love C, Lozano Mariscal CJ, Lu L, Lucarelli F, Lyu Y, Madsen J, Mahn KB, Makino Y, Mancina S, Mandalia S, Marie Sainte W, Mariş IC, Marka S, Marka Z, Marsee M, Martinez-Soler I, Maruyama R, Mayhew F, McElroy T, McNally F, Mead JV, Meagher K, Mechbal S, Medina A, Meier M, Merckx Y, Merten L, Meyers Z, Micallef J, Mikhailova M, Mitchell J, Montaruli T, Moore RW, Morii Y, Morse R, Moulai M, Mukherjee T, Naab R, Nagai R, Nakos M, Narayan A, Naumann U, Necker J, Negi A, Nelles A, Neumann M, Niederhausen H, Nisa MU, Noell A, Novikov A, Nowicki SC, Nozdrina A, Oberla E, Obertacke Pollmann A, O’Dell V, Oehler M, Oeyen B, Olivas A, Ørsøe R, Osborn J, O’Sullivan E, Papp L, Park N, Parker GK, Paudel EN, Paul L, Pérez de los Heros C, Petersen TC, Peterson J, Philippen S, Pieper S, Pinfold JL, Pizzuto A, Plaisier I, Plum M, Pontén A, Popovych Y, Prado Rodriguez M, Pries B, Procter-Murphy R, Przybylski GT, Pyras L, Rack-Helleis J, Rameez M, Rawlins K, Rechav Z, Rehman A, Reichherzer P, Renzi G, Resconi E, Reusch S, Rhode W, Riedel B, Riegel M, Rifaie A, Roberts EJ, Robertson S, Rodan S, Roellinghoff G, Rongen M, Rott C, Ruhe T, Ryckbosch D, Safa I, Saffer J, Salazar-Gallegos D, Sampathkumar P, Sanchez Herrera SE, Sandrock A, Sandstrom P, Santander M, Sarkar S, Sarkar S, Savelberg J, Savina P, Schaufel M, Schieler H, Schindler S, Schlickmann L, Schlüter B, Schlüter F, Schmeisser N, Schmidt T, Schneider J, Schröder FG, Schumacher L, Schwefer G, Sclafani S, Seckel D, Seikh M, Seunarine S, Shaevitz MH, Shah R, Sharma A, Shefali S, Shimizu N, Silva M, Skrzypek B, Smith D, Smithers B, Snihur R, Soedingrekso J, Søgaard A, Soldin D, Soldin P, Sommani G, Southall D, Spannfellner C, Spiczak GM, Spiering C, Stamatikos M, Stanev T, Stezelberger T, Stoffels J, Stürwald T, Stuttard T, Sullivan GW, Taboada I, Taketa A, Tanaka HK, Ter-Antonyan S, Thiesmeyer M, Thompson WG, Thwaites J, Tilav S, Tollefson K, Tönnis C, Torres J, Toscano S, Tosi D, Trettin A, Tsunesada Y, Tung CF, Turcotte R, Twagirayezu JP, Ty B, Unland Elorrieta MA, Upadhyay AK, Upshaw K, Valtonen-Mattila N, Vandenbroucke J, van Eijndhoven N, Vannerom D, van Santen J, Vara J, Veberic D, Veitch-Michaelis J, Venugopal M, Verpoest S, Vieregg A, Vijai A, Walck C, Weaver C, Weigel P, Weindl A, Weldert J, Welling C, Wendt C, Werthebach J, Weyrauch M, Whitehorn N, Wiebusch CH, Willey N, Williams DR, Wissel S, Witthaus L, Wolf A, Wolf M, Wörner G, Wrede G, Wren S, Xu XW, Yanez JP, Yildizci E, Yoshida S, Young R, Yu F, Yu S, Yuan T, Zhang Z, Zhelnin P, Zierke S, Zimmerman M (2024)


Publication Type: Conference contribution

Publication year: 2024

Journal

Publisher: Sissa Medialab Srl

Book Volume: 444

Conference Proceedings Title: Proceedings of Science

Event location: Nagoya, JPN

Abstract

The IceCube-Gen2 Neutrino Observatory is proposed to extend the all-flavour energy range of IceCube beyond PeV energies. It will comprise two key components: I) An enlarged 8 km3 in-ice optical Cherenkov array to measure the continuation of the IceCube astrophysical neutrino flux and improve IceCube’s point source sensitivity above ∼ 100 TeV; and II) A very large in-ice radio array with a surface area of about 500 km2. Radio waves propagate through ice with a kilometer-long attenuation length, hence a sparse radio array allows us to instrument a huge volume of ice to achieve a sufficient sensitivity to detect neutrinos with energies above tens of PeV. The different signal topologies for neutrino-induced events measured by the optical and in-ice radio detector - the radio detector is mostly sensitive to the cascades produced in the neutrino interaction, while the optical detector can detect long-ranging muon and tau leptons with high accuracy - yield highly complementary information. When detected in coincidence, these signals will allow us to reconstruct the neutrino energy and arrival direction with high fidelity. Furthermore, if events are detected in coincidence with a sufficient rate, they resemble the unique opportunity to study systematic uncertainties and to cross-calibrate both detector components. We present the expected rate of coincidence events for 10 years of operation. Furthermore, we analyzed possible detector optimizations to increase the coincidence rate.

Authors with CRIS profile

Involved external institutions

Deutsches Elektronen-Synchrotron DESY DE Germany (DE) Johannes Gutenberg-Universität Mainz (JGU) DE Germany (DE) University of Wisconsin - Madison US United States (USA) (US) Technische Universität Dortmund DE Germany (DE) Lawrence Berkeley National Laboratory (LBNL) US United States (USA) (US) Technische Universität München (TUM) DE Germany (DE) The University of Alabama US United States (USA) (US) Chiba University / 千葉大学 JP Japan (JP) University of Nebraska-Lincoln US United States (USA) (US) Uppsala University SE Sweden (SE) Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen DE Germany (DE) The Oskar Klein Centre SE Sweden (SE) Vrije Universiteit Brussel (VUB) BE Belgium (BE) Loyola University Chicago US United States (USA) (US) University of Canterbury NZ New Zealand (NZ) University of Rochester (UR) US United States (USA) (US) University of Maryland US United States (USA) (US) Université libre de Bruxelles (ULB) / Free University of Brussels BE Belgium (BE) Niels Bohr Institute / Niels Bohr Institutet DK Denmark (DK) University of Padua / Universita degli Studi di Padova IT Italy (IT) University of Kansas (KU) US United States (USA) (US) University of Delaware (UDEL) US United States (USA) (US) Marquette University US United States (USA) (US) Harvard University US United States (USA) (US) University of Utah US United States (USA) (US) South Dakota School of Mines and Technology US United States (USA) (US) University of California Irvine US United States (USA) (US) University of California, Berkeley US United States (USA) (US) Ruhr-Universität Bochum (RUB) DE Germany (DE) Karlsruhe Institute of Technology (KIT) DE Germany (DE) Georgia Institute of Technology US United States (USA) (US) Bergische Universität Wuppertal DE Germany (DE) Pennsylvania State University (Penn State) US United States (USA) (US) Massachusetts Institute of Technology (MIT) US United States (USA) (US) Tata Institute of Fundamental Research (TIFR) IN India (IN) University of Chicago US United States (USA) (US) Osaka Metropolitan University (OMU) JP Japan (JP) University of Alberta CA Canada (CA) University of Adelaide AU Australia (AU) Université Catholique de Louvain (UCL) BE Belgium (BE) Michigan State University US United States (USA) (US) Westfälische Wilhelms-Universität (WWU) Münster DE Germany (DE) Sungkyunkwan University (SKKU) KR Korea, Republic of (KR) University of Texas at Arlington (UTA) US United States (USA) (US) Clark Atlanta University US United States (USA) (US) King’s College London GB United Kingdom (GB) Drexel University US United States (USA) (US) State University of New York at Albany (UNY Albany / UAlbany) US United States (USA) (US) Queen's University CA Canada (CA) Humboldt-Universität zu Berlin DE Germany (DE) University of Nevada Las Vegas US United States (USA) (US) Universiteit Gent (UGent) / Ghent University BE Belgium (BE) University of Alaska Anchorage (UAA) US United States (USA) (US) University of Wisconsin-River Falls US United States (USA) (US) University of Tokyo JP Japan (JP) University of Oxford GB United Kingdom (GB) Columbia University US United States (USA) (US) Ohio State University US United States (USA) (US) University of Manchester GB United Kingdom (GB) Queen Mary University of London GB United Kingdom (GB) Southern University and A&M College (SUBR) US United States (USA) (US) Institute of Physics, Academia Sinica / 中央研究院物理研究所 TW Taiwan (TW) University of Notre Dame du Lac US United States (USA) (US) University of Geneva / Université de Genève (UNIGE) CH Switzerland (CH) Kavli Institute for Cosmological Physics US United States (USA) (US) Mercer University US United States (USA) (US) Yale University US United States (USA) (US)

How to cite

APA:

Abbasi, R., Ackermann, M., Adams, J., Agarwalla, S.K., Aguilar, J.A., Ahlers, M.,... Zimmerman, M. (2024). Estimating the coincidence rate between the optical and radio array of IceCube-Gen2. In Proceedings of Science. Nagoya, JPN: Sissa Medialab Srl.

MLA:

Abbasi, R., et al. "Estimating the coincidence rate between the optical and radio array of IceCube-Gen2." Proceedings of the 38th International Cosmic Ray Conference, ICRC 2023, Nagoya, JPN Sissa Medialab Srl, 2024.

BibTeX: Download