Isostructural bridging diferrous chalcogenide cores [FeII(μ-E)FeII] (E = O, S, Se, Te) with decreasing antiferromagnetic coupling down the chalcogenide series
Zars E, Gravogl L, Gau MR, Carroll PJ, Meyer K, Mindiola DJ (2023)
Publication Type: Journal article
Publication year: 2023
Journal
DOI: 10.1039/d3sc01094e
Abstract
Iron compounds containing a bridging oxo or sulfido moiety are ubiquitous in biological systems, but substitution with the heavier chalcogenides selenium and tellurium, however, is much rarer, with only a few examples reported to date. Here we show that treatment of the ferrous starting material [(tBupyrpyrr2)Fe(OEt2)] (1-OEt2) (tBupyrpyrr2 = 3,5-tBu2-bis(pyrrolyl)pyridine) with phosphine chalcogenide reagents E = PR3 results in the neutral phosphine chalcogenide adduct series [(tBupyrpyrr2)Fe(EPR3)] (E = O, S, Se; R = Ph; E = Te; R = tBu) (1-E) without any electron transfer, whereas treatment of the anionic starting material [K]2[(tBupyrpyrr2)Fe2(μ-N2)] (2-N2) with the appropriate chalcogenide transfer source yields cleanly the isostructural ferrous bridging mono-chalcogenide ate complexes [K]2[(tBupyrpyrr2)Fe2(μ-E)] (2-E) (E = O, S, Se, and Te) having significant deviation in the Fe-E-Fe bridge from linear in the case of E = O to more acute for the heaviest chalcogenide. All bridging chalcogenide complexes were analyzed using a variety of spectroscopic techniques, including 1H NMR, UV-Vis electronic absorbtion, and 57Fe Mössbauer. The spin-state and degree of communication between the two ferrous ions were probed via SQUID magnetometry, where it was found that all iron centers were high-spin (S = 2) FeII, with magnetic exchange coupling between the FeII ions. Magnetic studies established that antiferromagnetic coupling between the ferrous ions decreases as the identity of the chalcogen is tuned from O to the heaviest congener Te.
Authors with CRIS profile
Involved external institutions
How to cite
APA:
Zars, E., Gravogl, L., Gau, M.R., Carroll, P.J., Meyer, K., & Mindiola, D.J. (2023). Isostructural bridging diferrous chalcogenide cores [FeII(μ-E)FeII] (E = O, S, Se, Te) with decreasing antiferromagnetic coupling down the chalcogenide series. Chemical Science. https://doi.org/10.1039/d3sc01094e
MLA:
Zars, Ethan, et al. "Isostructural bridging diferrous chalcogenide cores [FeII(μ-E)FeII] (E = O, S, Se, Te) with decreasing antiferromagnetic coupling down the chalcogenide series." Chemical Science (2023).
BibTeX: Download