Boosting Efficiency in Light-Driven Water Splitting by Dynamic Irradiation through Synchronizing Reaction and Transport Processes**

Sender M, Huber FL, Moersch MCG, Kowalczyk D, Hniopek J, Klingler S, Schmitt M, Kaufhold S, Siewerth K, Popp J, Mizaikoff B, Ziegenbalg D, Rau S (2022)


Publication Type: Journal article

Publication year: 2022

Journal

Book Volume: 15

Article Number: e202200708

Journal Issue: 12

DOI: 10.1002/cssc.202200708

Abstract

This work elaborates the effect of dynamic irradiation on light-driven molecular water oxidation to counteract deactivation. It highlights the importance of overall reaction engineering to overcome limiting factors in artificial photosynthesis reactions. Systematic investigation of a homogeneous three-component ruthenium-based water oxidation system revealed significant potential to enhance the overall catalytic efficiency by synchronizing the timescales of photoreaction and mass transport in a capillary flow reactor. The overall activity could be improved by a factor of more than 10 with respect to the turnover number and a factor of 31 referring to the external energy efficiency by controlling the local availability of photons. Detailed insights into the mechanism of light driven water oxidation could be obtained using complementary methods of investigation like Raman, IR, and UV/Vis/emission spectroscopy, unraveling the importance of avoiding high concentrations of excited photosensitizers.

Involved external institutions

How to cite

APA:

Sender, M., Huber, F.L., Moersch, M.C.G., Kowalczyk, D., Hniopek, J., Klingler, S.,... Rau, S. (2022). Boosting Efficiency in Light-Driven Water Splitting by Dynamic Irradiation through Synchronizing Reaction and Transport Processes**. Chemsuschem, 15(12). https://dx.doi.org/10.1002/cssc.202200708

MLA:

Sender, Maximilian, et al. "Boosting Efficiency in Light-Driven Water Splitting by Dynamic Irradiation through Synchronizing Reaction and Transport Processes**." Chemsuschem 15.12 (2022).

BibTeX: Download