Fleischmann C, Leher I, Sesselmann S, Scherb D, Wolf A, Miehling J, Wartzack S (2020)
Publication Language: English
Publication Type: Journal article, Online publication
Publication year: 2020
Book Volume: 6
Pages Range: 486-488
Journal Issue: 3
Open Access Link: https://www.degruyter.com/journal/key/CDBME/html
Biomechanical functionality of artificial hips strongly correlates with quality of life of patients after total hip arthroplasty. As the numbers of total hip arthroplasty are growing due to increasing life expectancy, biomechanical research is of utmost importance to improve the implants used and the operative procedures applied. Multibody simulation is used to predict forces and moments inside the human body. Generic scaling is usually performed to adapt the human models used in multibody simulation to individual patients. However, since the shape and size of the bones can vary considerably, this type of scaling often is not sufficient. In this work various CT datasets were used to quantify differences of individual femoral shapes, especially with regard to important biomechanical hip parameters, such as the CCD angle or the femoral offset. Our results prove that multibody simulations should be modeled more patientspecific to be able to calculate articular forces and moments more precisely, and thus, to improve surgical planning.
APA:
Fleischmann, C., Leher, I., Sesselmann, S., Scherb, D., Wolf, A., Miehling, J., & Wartzack, S. (2020). Femoral Shape and Size Variability from segmented CT datasets for patient-specific THA planning. Current Directions in Biomedical Engineering, 6(3), 486-488. https://doi.org/10.1515/cdbme-2020-3125
MLA:
Fleischmann, Christopher, et al. "Femoral Shape and Size Variability from segmented CT datasets for patient-specific THA planning." Current Directions in Biomedical Engineering 6.3 (2020): 486-488.
BibTeX: Download