Aschauer E, Wojcik T, Polcik P, Hunold O, Arndt M, Dalbauer V, Mayrhofer PH, Felfer P, Riedl H (2021)
Publication Type: Journal article
Publication year: 2021
Book Volume: 201
Article Number: 109499
DOI: 10.1016/j.matdes.2021.109499
Diffusion driven high-temperature oxidation is one of the most important failure mechanisms of protective thin films in industrial applications. Within this study, we investigated the diffusion of oxygen at 800 to 1100 °C through nano-laminated crystalline Ti-Al-N and amorphous Mo-Si-B based multilayer coatings. The most prominent oxygen diffusion pathways, and hence the weakest points for oxidation, were identified by combining 18O tracer diffusion and atom probe tomography. An oxygen inward diffusion along column boundaries within Ti-Al-N layers in front of a visually prevalent oxidation front could be proven, highlighting the importance of these fast diffusion pathways. Furthermore, the amorphous Mo-Si-B layers act as barriers and therefore mitigate the migration of oxygen by accumulating reactive O species at a nanoscale range. Preventing oxygen diffusion along column boundaries – through the implementation of amorphous interlayers – lead to paralinear oxidation behavior and stable scales even after 7 h at 1100 °C. Our results provide a detailed insight on the importance of morphological features such as grain and column boundaries during high-temperature oxidation of protective thin films, in addition to their chemistry.
APA:
Aschauer, E., Wojcik, T., Polcik, P., Hunold, O., Arndt, M., Dalbauer, V.,... Riedl, H. (2021). Ultra-high oxidation resistance of nano-structured thin films. Materials & Design, 201. https://doi.org/10.1016/j.matdes.2021.109499
MLA:
Aschauer, E., et al. "Ultra-high oxidation resistance of nano-structured thin films." Materials & Design 201 (2021).
BibTeX: Download