Gasoline engine direct injection process chain (WiDiKo)

Third party funded individual grant


Acronym: WiDiKo

Start date : 01.01.2011

End date : 30.06.2014


Project details

Scientific Abstract

In dem BFS-Forschungsprojekt WiDiKO Wirkkette Direkteingespritzter Kraftstoffe im Ottomotor wurde der Einfluss einzelner Kraftstoffkomponenten (teils biogener Bestandteile) auf die ottomotorische Wirkkette beginnend bei der Sprayausbreitung über das Verdampfungsverhalten bis hin zur Entzündung und Flammenausbreitung für direkteinspritzende Ottomotoren experimentell untersucht, physikalisch basiert modelliert und damit einer Simulation zugänglich gemacht. Insgesamt kann festgestellt werden, dass die unterschiedlichen Eigenschaften der in Ottokraftstoffen enthaltenen Komponenten sich unter den Temperatur- und Druckbedingungen, wie sie in modernen ottomotorischen Verfahren vorliegen, erheblich auswirken, indem sie das Sprayverhalten in der Benzindirekteinspritzung signifikant beeinflussen, während der Verdampfung eine teilweise Separation der Komponenten auftreten kann und die Komponenten deutliche Unterschiede im Zündungs- und Flammenausbreitungsverhalten zeigen. Das Projekt konnte in den genannten Punkten den Stand des Wissens erweitern, dadurch, dass das Verhalten von Mehrkomponenten-Kraftstoffen besser verstanden, modelliert und so einer fundierten Simulation zugänglich gemacht werden konnte. Insbesondere zeigte sich für die häufig als biogene Bestandteile genutzten kurzkettigen Alkohole (Ethanol, Butanol) in der Mischung mit mineralölbasierten Kohlenwasserstoffen in der Verdampfung ein betriebspunktabhängiges Verhalten. Die korrekte Abbildung der Mischungsthermodynamik für Ethanol-haltige Kraftstoffe in einem Verdampfungsmodell ist ein wesentliches Projektergebnis. Hinsichtlich der Zündbedingungen zeigte sich der Einspritzzeitpunkt als über die Verdampfungskühlung dominanter Einfluss. In der Flammenausbreitung konnten alle gemessenen Daten (Reinstoffe, binäre und ternäre Mischungen, Benzin und Restgaseinfluss) sehr gut mit Daten zur laminaren Flammengeschwindigkeit korreliert werden. Zur Messung dieser laminaren Brenngeschwindigkeiten von flüssigen Kohlenwasserstoffen konnte an beiden beteiligten Instituten kooperativ eine neue Messmethode („Heat-Flux-Brenner“) etabliert werden. Neben zahlreichen Veröffentlichungen hat das Forschungsprojekt zu gemeinsamen weiteren Forschungsaktivitäten geführt (erfolgreiche Beantragung einer Nachwuchsgruppe beim BMEL, laufende Anträge bei der FVV und der FNR). Die bei BMW genutzte und industriell verbreitete 0D/1D Simulation von motorischen Vorgängen konnte in diesem Projekt maßgeblich profitieren, als auch zur Validierung der Abhängigkeiten zwischen Zündung und Verbrennung beitragen. Hier sind besonders die Wechselwirkungen der Projektergebnisse im Bereich der laminaren Flammengeschwindigkeiten erwähnenswert.
Das Gesamtprojekt gliedert sich in drei Teilprojekte:
 Teilprojekt A (LTT Erlangen): Experimentelle Untersuchung des komponenten-abhängigen Sprayverhaltens, des Verdampfungsverhaltens und der Verbrennung
 Teilprojekt B (IEC Freiberg): Simulation der Sprayausbreitung und Verdampfung für Ein- und Mehrkomponentenkraftstoffe
 Teilprojekt C (BMW AG): Motorisches Verbrennungsmodell für aktuelle Ottomotoren
Im Teilprojekt A (LTT Erlangen) wurden Sprayverhalten, Verdampfung und Verbrennung experimentell untersucht. Zur systematischen Untersuchung des Einflusses verschiedener Kraftstoffeigenschaften wurden 1- bis 3-Komponenten-Kraftstoffe im Vergleich zu dem Multi-Komponenten-Gemisch Benzin untersucht. Bereits in der Ausbreitung der flüssigen Kraftstoffphase zeigen sich Unterschiede bis zu einer Verdopplung der Eindringtiefe bei bestimmten Betriebsbedingungen und Kraftstoffzusammensetzungen. Im Verdampfungsverhalten zeigt sich bei moderaten Umgebungsbedingungen der Siedepunkt/der Siedeverlauf als bestimmende Eigenschaft, während bei hohen Temperaturen die Verdampfungsenthalpie dominiert. Auf diese Weise dominieren Alkohole, die Benzinen als regenerative Komponenten zugemischt werden, in diesem Fall das Verdampfungsverhalten des Gemisches. In den Untersuchungen zum Verbrennungsverhalten zeigte sich die laminare Flammengeschwindigkeit auch unter den stark geschichteten Bedingungen einer Sprayverbrennung als wesentliche Einflussgröße. Durch Einführung der Heat-Flux-Methode konnten laminare Flammengeschwindigkeiten für verschiedene flüssige Kohlenwasserstoffe (Ein- und Mehrkomponentenkraftstoffe, Variation von Temperatur, und Restgasanteil) experimentell bestimmt werden.
Im Teilprojekt B wurde die Verdampfung und Gemischbildung von Mehrkomponentenkraftstoffen detailliert numerisch untersucht. Hierbei wurden aufbauend auf einer umfangreichen Untersuchung zur Gemischphasenthermodynamik sowohl Einzeltropfen als auch motorische Sprays analysiert. Notwendige Modellerweiterungen wurden in die Simulation integriert und mit Daten aus der Literatur und den Spray-Messwerten aus Erlangen abgeglichen. Die hier vorgestellten Ergebnisse zeigen deutlich die enge Verbindung zwischen Experiment und Simulation, da nur so die implementierten Modelle validiert werden können. Es konnten sehr gute Übereinstimmungen zwischen den experimentellen Daten vom LTT Erlangen und den Simulationsergebnissen erreicht werden. Auf Basis der gewählten Mischungen wurden relevante thermodynamische Effekte identifiziert, die einen signifikanten Einfluss auf die Dampfverteilung haben. Die Thermodynamik der Gemische kann sehr gut mit Aktivitätsmodellen abgebildet werden. Eine flexible Variante stellt dabei die Methode UNIFAC dar, da diese für beliebige Kohlenwasserstoffmischungen anwendbar ist. Die differentielle Verdampfung führt zu einer Schichtung der Komponenten in der Gasphase mit Einfluss auf Verbrennungs- und Schadstoffbildungsverhalten. Im Rahmen des Projekts wurde insbesondere das Verbrennungs-verhalten, hier die Brenngeschwindigkeit, untersucht. Die laminaren Brenngeschwindigkeiten der betrachteten Mischungen können im Vergleich mit dem Experiment im Trend gut abgebildet werden.
Im Teilprojekt C wurde bei BMW die Einsetzbarkeit von 0D/1D Verfahren für die Simulation motorischer Verbrennungsprozesse geprüft. Dabei wurde festgestellt, dass die „Anbrenn“-Phase in der Modellbildung besondere Aufmerksamkeit benötigt. Dies liegt darin begründet, dass sich ein Fehler in der Bewertung des Brennverzugs (Zeitpunkt vom Zündfunken bis zur merklichen Wärmefreisetzung) durch den kompletten Verbrennungsablauf zieht. Damit würden im Folgenden die motorischen Zielgrößen wie Mitteldruck, Drehmoment und Abgastemperatur falsch bewertet [Gra12]. Im Bereich des „Anbrennens“ ist vor allem die Kenntnis der laminaren Brenngeschwindigkeit von großer Bedeutung. Gängige Formulierungen für die Anwendung in der 0D Simulation haben allerdings große Schwächen in ihrem thermodynamischen Wertebereich insbesondere auch bei neueren Kraftstoffzusammensetzungen [Kop09]. Hier können die neuen Erkenntnisse vom LTT Erlangen direkt für eine Modellbildung genutzt werden. Die thermodynamischen Eingangsgrößen für die Dauer des Brennverzugs sind zusätzlich sehr stark von den Brennraumtemperaturen abhängig. Im Teilprojekt C wurde gezeigt, dass die Verdampfungskühlung durch die Kraftstoffdirekteinspritzung einer 0D Simulation unter instantanen Annahmen sehr gut zugänglich ist [Müh10]. Weiterhin wurde aber auch deutlich, dass ein direkter Übertrag der Hochdruck-Kammer Messungen aus Erlangen nicht darstellbar ist, da sich aktuell nicht alle experimentellen Einflussgrößen auf die Verbrennung (insb. Turbulenz und Strömungsdynamik) integral bestimmen bzw. am Prüfstand „klinisch“ variieren lassen.

Involved:

Contributing FAU Organisations:

Funding Source