Design for Diagnosability (DfD)

Third party funded individual grant


Acronym: DfD

Start date : 15.05.2013

End date : 31.07.2016

Extension date: 30.09.2018

Website: http://www2.informatik.uni-erlangen.de/research/DfD/


Project details

Scientific Abstract

Viele Software-Systeme verhalten sich während der Testphase oder sogar im Regelbetrieb im negativen Sinne auffällig. Die Diagnose und die Therapie solcher Laufzeitanomalien ist oft langwierig und aufwändig bis hin zu unmöglich. Mögliche Folgen bei der Verwendung des Software-Systems sind lange Antwortzeiten, nicht erklärbares Verhalten oder auch Abstürze. Je länger die Folgen unbehandelt bleiben, desto höher ist der entstehende wirtschaftliche Schaden.
"Design for Diagnosability" beschreibt eine Werkzeugkette mit Modellierungssprachen, Bausteinen und Werkzeugen, mit denen die Diagnosefähigkeit von Software-Systemen gesteigert wird. Mit dieser Werkzeugkette werden Laufzeitanomalien schneller erkannt und behoben – idealerweise noch während der Entwicklung des Software-Systems. Unser Kooperationspartner QAware GmbH bringt ein Software EKG ein, mit dem die Exploration von Laufzeit-Metriken aus Software-Systemen, visualisiert als Zeitreihen, möglich ist.
Das Forschungsprojekt Design for Diagnosability erweitert das Umfeld dieses bestehenden Software-EKG. Die Software-Blackbox misst minimal-invasiv technische und fachliche Laufzeitdaten des Systems. Die Speicherung der erfassten Daten erfolgt in Form von Zeitreihen in einer neu entwickelten Zeitreihendatenbank Chronix. Chronix ist darauf ausgelegt, eine Vielzahl an Zeitreihen äußerst effizient hinsichtlich Speicherplatzbedarf und Zugriffszeiten zu speichern. Chronix ist ein Open Source Projekt (www.chronix.io) und kann frei benutzt werden. Die Zeitreihen werden mit der Time-Series-API analysiert, z.B. mittels einer automatisierten Strategie zur Erkennung von Ausreißern. Die Time-Series-API bietet Grundbausteine, um weitere Strategien zur Identifikation von Laufzeitanomalien in Zeitreihen umzusetzen.
Die aufgeführten Werkzeuge werden in Kombination mit dem bestehenden Software-EKG zum Dynamic Analysis Workbench ausgebaut, um eine zeitnahe Diagnose und Behebung von Laufzeitanomalien zu ermöglichen. Hierzu sind Diagnosepläne vorgesehen, die einen Software-Entwickler unterstützen, eine Laufzeitanomalie schneller und zuverlässiger einzugrenzen und zu erkennen. Das Ziel der Werkzeugkette ist die Qualität von Software-Systemen zu erhöhen, insbesondere hinsichtlich der Kennzahlen Mean-Time-To-Repair sowie Mean-Time-Between-Defects.

Vor dem erfolgreichen Projektabschluss im Juli 2016 konnten noch eine Reihe wesentlicher Beiträge geleistet werden:


Obwohl die Förderung im Jahr 2016 auslief, haben wir im Jahr 2017 noch weitere Beiträge geleistet:

Auch im Jahr 2018 haben wir noch weitere Beiträge im Forschungsprojekt geleistet:

Involved:

Contributing FAU Organisations:

Funding Source