Understanding of degradation mechanisms to improve components and design of PEFC (DECODE)

Third Party Funds Group - Sub project

Acronym: DECODE

Start date : 01.07.2011

End date : 30.06.2017

Overall project details

Overall project

Understanding of degradation mechanisms to improve components and design of PEFC

Project details

Scientific Abstract

The aim of the DECODE project is to elucidate degradation mechanisms in PEFC with special focus on the influence of liquid water and in a second phase to modify components to achieve a significant improvement of PEFC durability. The focus of the project is the creation of new knowledge and understanding of the PEFC degradation processes, and in addition, the practical improvements of fuel cell performance and durability.The project encompasses 11 partners with the necessaryand important expertise to investigate and quantify degradation related phenomena in fuel cells and to derive strategies for improved durability. In particular, the project profits from the inputs of two car and truck manufacturers, component manufacturers, research institutes with their advanced testing infrastructure and universities with advanced modelling expertise. The project is structured into 7 work packages for the investigation of various components of PEFC and in the field of organization and dissemination (involvement of all partners). The work packages are shortly described at the end of the summary. DECODE focuses both on detailed component characterisation and also subsystem (short stack) testing and analysis. The project aims at deriving the maximum information from all testing and analytical work but also follows a pragmatic approach. If specific component information can only be derived from a specific model configuration it is accepted within DECODE that the simplified arrangement is used. On the other hand, components are tested in long-term operation in short stacks under realistic and technical conditions thereby leading to naturally aged components. These will be analysed with all available analytical tools within the framework of the project. The components of PEFC investigated in the project consist in the electrodes, membranes, diffusion media and bipolar stacks. In-situ and ex-situ analysis is performed leading ideally to preliminary life time predictions at the end of the project. A special strength of the project is the large modelling activity which is expected to significantly advance knowledge and understanding of the processes leading to degradation and also to deliver the tools to describe ageing and performance degradation.


Contributing FAU Organisations:

Funding Source