Incremental proofs of sequential work

Beitrag bei einer Tagung

Details zur Publikation

Autorinnen und Autoren: Döttling N, Lai RWF, Malavolta G
Herausgeber: Yuval Ishai, Vincent Rijmen
Verlag: Springer Verlag
Jahr der Veröffentlichung: 2019
Band: 11477 LNCS
Tagungsband: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Seitenbereich: 292-323
ISBN: 9783030176556
ISSN: 0302-9743


A proof of sequential work allows a prover to convince a verifier that a certain amount of sequential steps have been computed. In this work we introduce the notion of incremental proofs of sequential work where a prover can carry on the computation done by the previous prover incrementally, without affecting the resources of the individual provers or the size of the proofs. To date, the most efficient instance of proofs of sequential work [Cohen and Pietrzak, Eurocrypt 2018] for N steps require the prover to have (formula presented) memory and to run for (formula presented) steps. Using incremental proofs of sequential work we can bring down the prover’s storage complexity to log N and its running time to N. We propose two different constructions of incremental proofs of sequential work: Our first scheme requires a single processor and introduces a poly-logarithmic factor in the proof size when compared with the proposals of Cohen and Pietrzak. Our second scheme assumes log N parallel processors but brings down the overhead of the proof size to a factor of 9. Both schemes are simple to implement and only rely on hash functions (modelled as random oracles).

FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Lai, Russell W. F.
Lehrstuhl für Informatik 13 (Angewandte Kryptographie)

Einrichtungen weiterer Autorinnen und Autoren

Carnegie Mellon University
CISPA − Helmholtz-Zentrum für Informationssicherheit


Döttling, N., Lai, R.W.F., & Malavolta, G. (2019). Incremental proofs of sequential work. In Yuval Ishai, Vincent Rijmen (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 292-323). Darmstadt, DE: Springer Verlag.

Döttling, Nico, Russell W. F. Lai, and Giulio Malavolta. "Incremental proofs of sequential work." Proceedings of the 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Eurocrypt 2019, Darmstadt Ed. Yuval Ishai, Vincent Rijmen, Springer Verlag, 2019. 292-323.


Zuletzt aktualisiert 2019-03-06 um 10:08