% Encoding: UTF-8
@COMMENT{BibTeX export based on data in FAU CRIS: https://cris.fau.de/}
@COMMENT{For any questions please write to cris-support@fau.de}
@inproceedings{faucris.218989283,
abstract = {A proof of sequential work allows a prover to convince a verifier that a certain amount of sequential steps have been computed. In this work we introduce the notion of incremental proofs of sequential work where a prover can carry on the computation done by the previous prover incrementally, without affecting the resources of the individual provers or the size of the proofs. To date, the most efficient instance of proofs of sequential work [Cohen and Pietrzak, Eurocrypt 2018] for N steps require the prover to have (formula presented) memory and to run for (formula presented) steps. Using incremental proofs of sequential work we can bring down the proverâ€™s storage complexity to log N and its running time to N. We propose two different constructions of incremental proofs of sequential work: Our first scheme requires a single processor and introduces a poly-logarithmic factor in the proof size when compared with the proposals of Cohen and Pietrzak. Our second scheme assumes log N parallel processors but brings down the overhead of the proof size to a factor of 9. Both schemes are simple to implement and only rely on hash functions (modelled as random oracles).},
author = {DÃ¶ttling, Nico and Lai, Russell W. F. and Malavolta, Giulio},
booktitle = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)},
date = {2019-05-19/2019-05-23},
doi = {10.1007/978-3-030-17656-3{\_}11},
editor = {Yuval Ishai, Vincent Rijmen},
faupublication = {yes},
isbn = {9783030176556},
note = {CRIS-Team Scopus Importer:2019-05-28},
pages = {292-323},
peerreviewed = {unknown},
publisher = {Springer Verlag},
title = {{Incremental} proofs of sequential work},
venue = {Darmstadt},
volume = {11477 LNCS},
year = {2019}
}