Asymptotic analysis of spin foam amplitude with timelike triangles

Journal article


Publication Details

Author(s): Liu H, Han M
Journal: Physical Review D
Publication year: 2019
Volume: 99
Journal issue: 8
ISSN: 2470-0010
eISSN: 2470-0029


Abstract

The large-j asymptotic behavior of the four-dimensional spin foam amplitude is investigated for the extended spin foam model (Conrady-Hnybida extension) on a simplicial complex. We study the most general situation in which timelike tetrahedra with timelike triangles are taken into account. The large-j asymptotic behavior is determined by the critical configurations of the amplitude. We identify the critical configurations that correspond to the Lorentzian simplicial geometries with timelike tetrahedra and triangles. Their contributions to the amplitude are asymptotic phases, whose exponents equal the Regge action of gravity. The amplitude may also contains critical configurations corresponding to nondegenerate split signature 4-simplices and degenerate vector geometries. But vertex amplitudes containing at least one timelike and one spacelike tetrahedra only give Lorentzian 4-simplices, while the split signature or degenerate 4-simplex does not appear.


FAU Authors / FAU Editors

Han, Muxin Dr.
Chair for Theoretical Physics III (Quantum Gravity)


External institutions with authors

Centre de Physique Théorique


How to cite

APA:
Liu, H., & Han, M. (2019). Asymptotic analysis of spin foam amplitude with timelike triangles. Physical Review D, 99(8). https://dx.doi.org/10.1103/PhysRevD.99.084040

MLA:
Liu, Hongguang, and Muxin Han. "Asymptotic analysis of spin foam amplitude with timelike triangles." Physical Review D 99.8 (2019).

BibTeX: 

Last updated on 2019-27-05 at 08:38