Numerical study of the hydrodynamics of fluidized beds operated under sub-atmospheric pressure

Zarekar S, Bück A, Jacob M, Tsotsas E (2019)


Publication Type: Journal article

Publication year: 2019

Journal

Book Volume: 372

Pages Range: 1134-1153

DOI: 10.1016/j.cej.2019.04.159

Abstract

Fluidized beds operated under partial vacuum offer a promising alternative to the expensive freeze-drying technique for processing thermo-sensitive materials in the food and pharmaceutical industries. However, the hydrodynamics of vacuum fluidized beds has not been extensively investigated. In this paper, we apply a two-fluid Eulerian model to investigate the influence of sub-atmospheric pressure on the hydrodynamic characteristics in two-dimensional fluidized beds. The simulations are compared with experiments performed in a batch vacuum fluidized bed plant. A parametric study of the effect of pressure on bed hydrodynamics is performed for two fluidization conditions: (1)constant excess velocity and (2)three times the minimum fluidization velocity. The pressure is varied in the range 1000 mbar–100 mbar with fluidized particles belonging to Geldart group D. A detailed investigation is carried out on porosity distribution, bed expansion, bypass ratio, and bubble characteristics. At low pressure, the porosity distribution is non-homogeneous with increased bubble activity near walls. A decrease in bed porosity and bubble splitting is observed as the operating pressure is reduced. The simulation results are also compared with semi-empirical correlations developed for atmospheric pressure conditions. The applicability of these correlations at sub-atmospheric pressures is, thus, evaluated.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Zarekar, S., Bück, A., Jacob, M., & Tsotsas, E. (2019). Numerical study of the hydrodynamics of fluidized beds operated under sub-atmospheric pressure. Chemical Engineering Journal, 372, 1134-1153. https://dx.doi.org/10.1016/j.cej.2019.04.159

MLA:

Zarekar, Sayali, et al. "Numerical study of the hydrodynamics of fluidized beds operated under sub-atmospheric pressure." Chemical Engineering Journal 372 (2019): 1134-1153.

BibTeX: Download