Understanding the Role of Surface Charge in Cellular Uptake and X‑ray-Induced ROS Enhancing of Au−Fe3O4 Nanoheterodimers

Beitrag in einer Fachzeitschrift

Details zur Publikation

Autorinnen und Autoren: Klein S, Stiegler L, Harreiß C, Distel L, Neuhuber W, Spiecker E, Hirsch A, Kryschi C
Zeitschrift: ACS Applied Bio Materials
Jahr der Veröffentlichung: 2018
Seitenbereich: 2002-2011
ISSN: 2576-6422
Sprache: Englisch


Au−Fe3O4 nanoheterodimers were obtained by thermally
decomposing iron oleate on presynthesized gold nanoparticles. Water solubility as
well as surface charges were achieved by encapsulating the initially
hydrophobic Au−Fe3O4 nanoheterodimers in a self-assembled bilayer
shell formed either by 1-octadecylpyridinium, providing positive surface
charges, or by 4-dodecylbenzenesulfonate, yielding a negatively charged
surface. The surface charge and surface architecture were shown to control both
the cellular entry and the intracellular trafficking of the Au−Fe3O4 nanoheterodimers.
The positively charged (1-octylpyridinium-terminated) Au−Fe3O4 nanoheterodimers were internalized by both
breast cancer cells (MCF-7) and epithelial cells (MCF-10 A), wherein they were
electrostatically bound at the negatively charged membranes of the cell organelles
and, in particular, adsorbed onto the mitochondrial membrane. The treatment of
MCF-7 and MCF-10 cells with a fractional X-radiation dose of 1 Gy resulted into
a large increase of superoxide production, which arose from the Au−Fe3O4 nanoheterodimer-induced mitochondrial
depolarization. In contrast, the negatively charged (4-dodecylbenzenesulfonateterminated)
Au−Fe3O4 nanoheterodimers preferentially invaded the
cancerous MCF-7 cells by direct permeation. X-ray treatment of MCF-7 cells,
loaded with anionic Au−Fe3O4 nanoheterodimers,
yielded the increase of both hydroxyl radical and cytoplasmic superoxide
formation. The X-radiation-induced activation of the Fe3O4 surfaces, consisting of Fe2+ and Fe3+ cations,
triggered the catalysis of the hydroxyl radical production, whereas superoxide
formation presumably occurred through X-rayinduced photoelectron emission near
the Au surface. Since hydroxyl radicals are highly cytotoxic and the negatively
charged Au−Fe3O4 NHDs spare the healthy MCF-10A cells, these
Au−Fe3O4 nanoheterodimers exhibit a higher potential
for radiation therapy than the positively charged Au−Fe3O4 nanoheterodimers. Encouraging results from the
clonogenic cell survival assay and DMF calculations corroborate the excellent
performance of the anionic Au−Fe3O4 nanoheterodimers
as an X-ray dosage enhancer.

FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Distel, Luitpold Prof. Dr.
Harreiß, Christina
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Hirsch, Andreas Prof. Dr.
Lehrstuhl für Organische Chemie II
Klein, Stefanie Dr.
Lehrstuhl für Physikalische Chemie I
Kryschi, Carola Prof. Dr.
Professur für Physikalische Chemie
Neuhuber, Winfried Prof. Dr.
Medizinische Fakultät
Spiecker, Erdmann Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Stiegler, Lisa
Lehrstuhl für Organische Chemie II

Zusätzliche Organisationseinheit(en)
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Interdisziplinäres Zentrum, Center for Nanoanalysis and Electron Microscopy (CENEM)


Klein, S., Stiegler, L., Harreiß, C., Distel, L., Neuhuber, W., Spiecker, E.,... Kryschi, C. (2018). Understanding the Role of Surface Charge in Cellular Uptake and X‑ray-Induced ROS Enhancing of Au−Fe3O4 Nanoheterodimers. ACS Applied Bio Materials, 2002-2011. https://dx.doi.org/10.1021/acsabm.8b00511

Klein, Stefanie, et al. "Understanding the Role of Surface Charge in Cellular Uptake and X‑ray-Induced ROS Enhancing of Au−Fe3O4 Nanoheterodimers." ACS Applied Bio Materials (2018): 2002-2011.


Zuletzt aktualisiert 2019-27-05 um 17:02