Hierarchical hybrid grids: data structures and core algorithms for multigrid

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Hülsemann F, Bergen B
Zeitschrift: Numerical Linear Algebra With Applications
Verlag: Wiley-Blackwell
Jahr der Veröffentlichung: 2004
Band: 11
Seitenbereich: 279-291
ISSN: 1070-5325


Abstract

For many scientific and engineering applications, it is often desirable to use unstructured grids to represent complex geometries. Unfortunately, the data structures required to represent discretizations on such grids typically result in extremely inefficient performance on current high-performance architectures. Here, we introduce a grid framework using patch-wise, regular refinement that retains the flexibility of unstructured grids, while achieving performance comparable to that seen with purely structured grids. This approach leads to a grid hierarchy suitable for use with geometric multigrid methods, thus combining asymptotically optimal algorithms with extremely efficient data structures to obtain a powerful technique for large scale simulations. Copyright © 2004 John Wiley & Sons, Ltd.


Zitierweisen

APA:
Hülsemann, F., & Bergen, B. (2004). Hierarchical hybrid grids: data structures and core algorithms for multigrid. Numerical Linear Algebra With Applications, 11, 279-291. https://dx.doi.org/10.1002/nla.382

MLA:
Hülsemann, Frank, and Benjamin Bergen. "Hierarchical hybrid grids: data structures and core algorithms for multigrid." Numerical Linear Algebra With Applications 11 (2004): 279-291.

BibTeX: 

Zuletzt aktualisiert 2018-26-09 um 09:53