Free surface Neumann boundary condition for the advection-diffusion lattice Boltzmann method

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autor(en): Markl M, Körner C
Zeitschrift: Journal of Computational Physics
Verlag: Academic Press Inc.
Jahr der Veröffentlichung: 2015
Band: 301
Seitenbereich: 230-246
ISSN: 1090-2716
Sprache: Englisch


Abstract


The main objective of this paper is the derivation and validation of a free surface Neumann boundary condition for the advection-diffusion lattice Boltzmann method. Most literature boundary conditions are applied on straight walls and sometimes on curved geometries or fixed free surfaces, but dynamic free surfaces, especially with fluid motion in normal direction, are hardly addressed. A Chapman-Enskog Expansion is the basis for the derivation of the advection-diffusion equation using the advection-diffusion lattice Boltzmann method and the BGK collision operator. For this numerical scheme, a free surface Neumann boundary condition with no flux in normal direction to the free surface is derived. Finally, the boundary condition is validated in different static and dynamic test scenarios, including a detailed view on the conservation of the diffusive scalar, the normal and tangential flux components to the free surface and the accuracy. The validation scenarios reveal the superiority of the new approach to the compared literature schemes, especially for arbitrary fluid motion.



FAU-Autoren / FAU-Herausgeber

Körner, Carolin Prof. Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)
Markl, Matthias Dr.-Ing.
Department Werkstoffwissenschaften


Zitierweisen

APA:
Markl, M., & Körner, C. (2015). Free surface Neumann boundary condition for the advection-diffusion lattice Boltzmann method. Journal of Computational Physics, 301, 230-246. https://dx.doi.org/10.1016/j.jcp.2015.08.033

MLA:
Markl, Matthias, and Carolin Körner. "Free surface Neumann boundary condition for the advection-diffusion lattice Boltzmann method." Journal of Computational Physics 301 (2015): 230-246.

BibTeX: 

Zuletzt aktualisiert 2018-25-11 um 20:50