Side-Chain Engineering for Enhancing the Properties of Small Molecule Solar Cells: A Trade-off Beyond Efficiency

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: Min J, Cui C, Heumüller T, Fladischer S, Cheng X, Spiecker E, Li Y, Brabec C
Zeitschrift: Advanced Energy Materials
Jahr der Veröffentlichung: 2016
Band: 6
Heftnummer: 14
ISSN: 1614-6832
eISSN: 1614-6840
Sprache: Englisch


Abstract


Three small molecules with different substituents on bithienyl-benzo[1,2-b:4,5-b′]dithiophene (BDTT) units, BDTT-TR (meta-alkyl side chain), BDTT-O-TR (meta-alkoxy), and BDTT-S-TR (meta-alkylthio), are designed and synthesized for systematically elucidating their structure–property relationship in solution-processed bulk heterojunction organic solar cells. Although all three molecules show similar molecular structures, thermal properties and optical band gaps, the introduction of meta-alkylthio-BDTT as the central unit in the molecular backbone substantially results in a higher absorption coefficient, slightly lower highest occupied molecular orbital level and significantly more efficient and balanced charge transport property. The bridging atom in the meta-position to the side chain is found to impact the microstructure formation which is a subtle but decisive way: carrier recombination is suppressed due to a more balanced carrier mobility and BDTT based devices with the meta-alkylthio side chain (BDTT-S-TR) show a higher power conversion efficiency (PCE of 9.20%) as compared to the meta-alkoxy (PCE of 7.44% for BDTT-TR) and meta-alkyl spacer (PCE of 6.50% for BDTT-O-TR). Density functional density calculations suggest only small variations in the torsion angle of the side chains, but the nature of the side chain linkage is further found to impact the thermal as well as the photostability of corresponding devices. The aim is to provide comprehensive insight into fine-tuning the structure–property interrelationship of the BDTT material class as a function of side chain engineering.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Brabec, Christoph Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Rechberger, Stefanie Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Heumüller, Thomas Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Min, Jie
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Spiecker, Erdmann Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)


Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials
Interdisziplinäres Zentrum, Center for Nanoanalysis and Electron Microscopy (CENEM)
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)


Einrichtungen weiterer Autorinnen und Autoren

Soochow University, Suzhou / 苏州大学


Forschungsbereiche

B Nanoelectronic Materials
Exzellenz-Cluster Engineering of Advanced Materials
A2 Nanoanalysis and Microscopy
Exzellenz-Cluster Engineering of Advanced Materials


Zitierweisen

APA:
Min, J., Cui, C., Heumüller, T., Fladischer, S., Cheng, X., Spiecker, E.,... Brabec, C. (2016). Side-Chain Engineering for Enhancing the Properties of Small Molecule Solar Cells: A Trade-off Beyond Efficiency. Advanced Energy Materials, 6(14). https://dx.doi.org/10.1002/aenm.201600515

MLA:
Min, Jie, et al. "Side-Chain Engineering for Enhancing the Properties of Small Molecule Solar Cells: A Trade-off Beyond Efficiency." Advanced Energy Materials 6.14 (2016).

BibTeX: 

Zuletzt aktualisiert 2019-09-08 um 09:02