Real-Time Investigation of Intercalation and Structure Evolution in Printed Polymer:Fullerene Bulk Heterojunction Thin Films

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autor(en): Kassar T, Güldal NS, Berlinghof M, Ameri T, Kratzer A, Schroeder BC, Li Destri G, Hirsch A, Heeney M, Mcculloch I, Brabec C, Unruh T
Zeitschrift: Advanced Energy Materials
Jahr der Veröffentlichung: 2016
Band: 6
Heftnummer: 5
ISSN: 1614-6840
Sprache: Englisch


Abstract


The complex intermixing morphology is critical for the performance of the nanostructured polymer:fullerene bulk heterojunction (BHJ) solar cells. Here, time resolved in situ grazing incidence X-ray diffraction and grazing incidence small angle X-ray scattering are used to track the structure formation of BHJ thin films formed from the donor polymer poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) with different fullerene derivative acceptors. The formation of stable bimolecular crystals through the intercalation of fullerene molecules between the side chains of polymer crystallites is investigated. Such systems exhibit more efficient exciton dissociation but lower photo-conductance and faster decay of charges. On the basis of the experimental observations, intercalation obviously takes place before or with the formation of the crystalline polymer domains. It results in more stable structures whose volume remains constant upon further drying. Three distinct periods of drying are observed and the formation of unidimensional fullerene channels along the π-stacking direction of polymer crystallites is confirmed.



FAU-Autoren / FAU-Herausgeber

Ameri, Tayebeh Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Berlinghof, Marvin
Lehrstuhl für Kristallographie und Strukturphysik
Brabec, Christoph Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Güldal, Nusret Sena
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Hirsch, Andreas Prof. Dr.
Lehrstuhl für Organische Chemie II
Kassar, Thaer
Professur für Nanomaterialcharakterisierung (Streumethoden)
Kratzer, Andreas
Lehrstuhl für Organische Chemie II
Unruh, Tobias Prof. Dr.
Professur für Nanomaterialcharakterisierung (Streumethoden)


Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials


Autor(en) der externen Einrichtung(en)
European Synchrotron Radiation Facility (ESRF)
Imperial College London / The Imperial College of Science, Technology and Medicine


Zitierweisen

APA:
Kassar, T., Güldal, N.S., Berlinghof, M., Ameri, T., Kratzer, A., Schroeder, B.C.,... Unruh, T. (2016). Real-Time Investigation of Intercalation and Structure Evolution in Printed Polymer:Fullerene Bulk Heterojunction Thin Films. Advanced Energy Materials, 6(5). https://dx.doi.org/10.1002/aenm.201502025

MLA:
Kassar, Thaer, et al. "Real-Time Investigation of Intercalation and Structure Evolution in Printed Polymer:Fullerene Bulk Heterojunction Thin Films." Advanced Energy Materials 6.5 (2016).

BibTeX: 

Zuletzt aktualisiert 2018-13-11 um 13:50