All Electrical Access to Topological Transport Features in Mn1.8PtSn Films

Schlitz R, Swekis P, Markou A, Reichlova H, Lammel M, Gayles J, Thomas A, Nielsch K, Felser C, Goennenwein STB (2019)


Publication Type: Journal article

Publication year: 2019

Journal

Book Volume: 19

Pages Range: 2366-2370

Journal Issue: 4

DOI: 10.1021/acs.nanolett.8b05042

Abstract

The presence of nontrivial magnetic topology can give rise to nonvanishing scalar spin chirality and consequently a topological Hall or Nernst effect. In turn, topological transport signals can serve as indicators for topological spin structures. This is particularly important in thin films or nanopatterned materials where the spin structure is not readily accessible. Conventionally, the topological response is determined by combining magnetotransport data with an independent magnetometry experiment. This approach is prone to introduce measurement artifacts. In this study, we report the observation of large topological Hall and Nernst effects in micropatterned thin films of Mn 1.8 PtSn below the spin reorientation temperature T SR ≈ 190 K. The magnitude of the topological Hall effect ρ xy T = 8 nωm is close to the value reported in bulk Mn 2 PtSn, and the topological Nernst effect S xy T = 115 nV K -1 measured in the same microstructure has a similar magnitude as reported for bulk MnGe (S xy T ∼ 150 nV K -1 ), the only other material where a topological Nernst was reported. We use our data as a model system to introduce a topological quantity, which allows one to detect the presence of topological transport effects without the need for independent magnetometry data. Our approach thus enables the study of topological transport also in nanopatterned materials without detrimental magnetization related limitations.

Involved external institutions

How to cite

APA:

Schlitz, R., Swekis, P., Markou, A., Reichlova, H., Lammel, M., Gayles, J.,... Goennenwein, S.T.B. (2019). All Electrical Access to Topological Transport Features in Mn1.8PtSn Films. Nano Letters, 19(4), 2366-2370. https://doi.org/10.1021/acs.nanolett.8b05042

MLA:

Schlitz, Richard, et al. "All Electrical Access to Topological Transport Features in Mn1.8PtSn Films." Nano Letters 19.4 (2019): 2366-2370.

BibTeX: Download