Overcoming Electrode-Induced Losses in Organic Solar Cells by Tailoring a Quasi-Ohmic Contact to Fullerenes via Solution-Processed Alkali Hydroxide Layers

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: Zhang H, Shallcross RC, Li N, Stubhan T, Hou Y, Chen W, Ameri T, Turbiez M, Armstrong NR, Brabec C
Zeitschrift: Advanced Energy Materials
Jahr der Veröffentlichung: 2016
Band: 6
Heftnummer: 9
ISSN: 1614-6832
eISSN: 1614-6840
Sprache: Englisch


Abstract


It is shown that the performance of inverted organic solar cells can be significantly improved by facilitating the formation of a quasi-ohmic contact via solution-processed alkali hydroxide (AOH) interlayers on top of n-type metal oxide (aluminum zinc oxide, AZO, and zinc oxide, ZnO) layers. AOHs significantly reduce the work function of metal oxides, and are further proven to effectively passivate defect states in these metal oxides. The interfacial energetics of these electron collecting contacts with a prototypical electron acceptor (C) are investigated to reveal the presence of a large interface dipole and a new interface state between the Fermi energy and the C highest occupied molecular orbital for AOH-modified AZO contacts. These novel interfacial gap states are a result of ground-state electron transfer from the metal hydroxide-functionalized AZO contact to the adsorbed molecules, which are hypothesized to be electronically hybridized with the contact. These interface states tail all the way to the Fermi energy, providing for a highly n-doped (metal-like) interfacial molecular layer. Furthermore, the strong "light-soaking" effect is no longer observed in devices with a AOH interface. Solution-processed alkali hydroxides significantly reduce the work function of metal oxides, such as zinc oxide or aluminum zinc oxide (AZO), and are further proven to effectively passivate defect states in these metal oxides. The interface states with alkali hydroxide-modified AZO contacts tail all the way to the Fermi energy, providing for a highly n-doped (metal-like) interfacial molecular layer.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Ameri, Tayebeh Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Brabec, Christoph Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Chen, Wei
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Hou, Yi
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Li, Ning Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Stubhan, Tobias Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Zhang, Hong
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)


Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials


Einrichtungen weiterer Autorinnen und Autoren

BASF Schweiz AG
University of Arizona


Forschungsbereiche

B Nanoelectronic Materials
Exzellenz-Cluster Engineering of Advanced Materials


Zitierweisen

APA:
Zhang, H., Shallcross, R.C., Li, N., Stubhan, T., Hou, Y., Chen, W.,... Brabec, C. (2016). Overcoming Electrode-Induced Losses in Organic Solar Cells by Tailoring a Quasi-Ohmic Contact to Fullerenes via Solution-Processed Alkali Hydroxide Layers. Advanced Energy Materials, 6(9). https://dx.doi.org/10.1002/aenm.201502195

MLA:
Zhang, Hong, et al. "Overcoming Electrode-Induced Losses in Organic Solar Cells by Tailoring a Quasi-Ohmic Contact to Fullerenes via Solution-Processed Alkali Hydroxide Layers." Advanced Energy Materials 6.9 (2016).

BibTeX: 

Zuletzt aktualisiert 2019-11-07 um 09:19