Integrated molecular, morphological and interfacial engineering towards highly efficient and stable solution-processed small molecule solar cells

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: Min J, Luponosov YN, Gasparini N, Xue L, Drozdov FV, Peregudova SM, Dmitryakov PV, Gerasimov KL, Anokhin DV, Zhang ZG, Ameri T, Chvalun SN, Ivanov DA, Li Y, Ponomarenko SA, Brabec C
Zeitschrift: Journal of Materials Chemistry A
Verlag: Royal Society of Chemistry
Jahr der Veröffentlichung: 2015
Band: 3
Heftnummer: 45
Seitenbereich: 22695-22707
ISSN: 2050-7488
eISSN: 2050-7496
Sprache: Englisch


Abstract


The synthesis of a series of A-π-D-π-A oligomers bearing coplanar electron-donating dithieno[3,2-b:2′,3′-d]silole (DTS) unit linked through bithiophene π-bridges with the electron-withdrawing alkyldicyanovinyl (alkyl-DCV) groups is described. This study demonstrates a systematic investigation of structure-property relationships in this type of oligomer and shows obvious benefits of alkyl-DCV groups as compared to the commonly used DCV ones, in terms of elaboration of high performance organic solar cells (OSCs). Considerable efforts have been made to improve the power conversion efficiency (PCE) of oligomer-based OSCs by diverse strategies including fine-tuning of the oligomer properties via variation of their terminal and central alkyl chains, blend morphology control via solvent vapor annealing (SVA) treatment, and surface modification via interfacial engineering. These efforts allowed achieving PCEs of up to 6.4% for DTS(Oct)-(2T-DCV-Me) blended with PCBM. Further morphological investigations demonstrated that the usage of SVA treatment indeed effectively results in increased absorption and ordering of the BHJ composite, with the only exception for the most soluble oligomer DTS(Oct)-(2T-DCV-Hex). Besides, a detailed study analyzed the charge transport properties and recombination loss mechanisms for these oligomers. This study not only revealed the importance of integrated alkyl chain engineering on gaining morphological control for high performance OSCs, but also exhibited a clear correlation between molecular ordering and charge carrier mobility respective to carrier dynamics. These results outline a detailed strategy towards a rather complete characterization and optimization methodology for organic photovoltaic devices, thereby paving the way for researchers to easily find the performance parameters adapted for widespread applications.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Ameri, Tayebeh Dr.
Brabec, Christoph Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Gasparini, Nicola
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Min, Jie
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)


Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials


Einrichtungen weiterer Autorinnen und Autoren

Chinese Academy of Sciences (CAS) / 中国科学院
Lomonosov Moscow State University / Московский государственный университет имени М.В.Ломоносова
National Research Centre (NRC) / المركز القومي للبحوث
Russian Academy of Sciences / Росси́йская акаде́мия нау́к (RAS)


Forschungsbereiche

B Nanoelectronic Materials
Exzellenz-Cluster Engineering of Advanced Materials


Zitierweisen

APA:
Min, J., Luponosov, Y.N., Gasparini, N., Xue, L., Drozdov, F.V., Peregudova, S.M.,... Brabec, C. (2015). Integrated molecular, morphological and interfacial engineering towards highly efficient and stable solution-processed small molecule solar cells. Journal of Materials Chemistry A, 3(45), 22695-22707. https://dx.doi.org/10.1039/c5ta06706e

MLA:
Min, Jie, et al. "Integrated molecular, morphological and interfacial engineering towards highly efficient and stable solution-processed small molecule solar cells." Journal of Materials Chemistry A 3.45 (2015): 22695-22707.

BibTeX: 

Zuletzt aktualisiert 2019-21-06 um 09:03