Modelling and computation of curing and damage of thermosets

Beitrag in einer Fachzeitschrift

Details zur Publikation

Autorinnen und Autoren: Mergheim J, Possart G, Steinmann P
Zeitschrift: Computational Materials Science
Verlag: Elsevier
Jahr der Veröffentlichung: 2012
Band: 53
Heftnummer: 1
Seitenbereich: 359-367
ISSN: 0927-0256
Sprache: Englisch


The curing of thermosets is a complex process involving the transition from a fluid into a (visco-) elastic solid. This phase transition comes along with an increase in stiffness and a volume shrinkage of the polymer. The latter may lead to severe residual strains and stresses, which in turn can cause damage in the final, usually quasi-brittle material. In this contribution a constitutive model is developed which takes into account the curing of a thermosetting material together with the process-induced damage as resulting from curing shrinkage. The curing of the material is governed by a phenomenological hypoelastic constitutive equation which includes temporal evolutions for stiffness and volume shrinkage. Thermal and viscous effects are neglected in the present study. An isotropic gradient-enhanced damage model is adapted to describe the damage evolution. The curing-damage model is implemented into a finite element code and numerical examples for thermosetting materials demonstrate that the proposed model is capable to predict cure-induced damage in thermosets. © 2011 Elsevier B.V. All rights reserved.

FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Mergheim, Julia PD Dr.
Professur für Computational Mechanics
Possart, Gunnar Dr.-Ing.
Lehrstuhl für Technische Mechanik
Steinmann, Paul Prof. Dr.-Ing.
Lehrstuhl für Technische Mechanik


Mergheim, J., Possart, G., & Steinmann, P. (2012). Modelling and computation of curing and damage of thermosets. Computational Materials Science, 53(1), 359-367.

Mergheim, Julia, Gunnar Possart, and Paul Steinmann. "Modelling and computation of curing and damage of thermosets." Computational Materials Science 53.1 (2012): 359-367.


Zuletzt aktualisiert 2018-07-07 um 20:23