Modellierung des reaktiven Transports von Schadstoffen in der (un-)gesättigten Bodenzone zur Prognose der natürlichen Selbstreinigung

Drittmittelfinanzierte Gruppenförderung - Teilprojekt

Details zum übergeordneten Gesamtprojekt

Titel des Gesamtprojektes: Kontrollierter natürlicher Rückhalt und Abbau von Schadstoffen bei der Sanierung kontaminierter Böden und Grundwässer (BMBF Förderschwerpunkt KORA)

Details zum Projekt

Prof. Dr. Peter Knabner
Dr. Alexander Prechtel

Prof. Dr. Florian Frank
Dr. Alexander Prechtel
PD Dr. Serge Kräutle

Beteiligte FAU-Organisationseinheiten:
Department Mathematik
Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)

Mittelgeber: BMBF / Verbundprojekt
Projektstart: 01.04.2004
Projektende: 31.03.2007
Laufzeitverlängerung bis: 31.12.2008


Multicomponent reactive transport in natural porous media
Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)

Abstract (fachliche Beschreibung):

The evaluation of the potential of contaminated sites concerning natural
attenuation needs comprehensive process descriptions and accurate,
reliable numerical algorithms. Numerical errors may lead to
qualitatively completely wrong conclusions concerning the potential of
the site for degradation. It has been developed a comprehensive and
flexible simulation tool, that is outstanding concerning the variety of
processes, the quality and efficiency of the calculations ensured by
modern numerical methods as well as the usability. The existing software
platform RICHY has been extended, which is already intensely and
successfully used by universities, institutes and consultants for the
simulation of reactive transport and parameter identification. Among
previous modules for coupled sufactant transport, preferential,
unsaturated flow or carrier facilitated transport the project could
realize new model components that surpass most of all existing software
packages. The extensions contain complete descriptions of microbially
catalysed degradation with arbitrary reaction partners and inhibition,
general multicomponent reactions including the effects of ionic
strength, as well as mineral dissolution and precipitation. The
efficient and highly accurate, newly developed mathematical solution
algorithms for the resulting coupled systems of partial differential
equations could show their quality in complex international benchmark
studies. Locally mass conserving, mixed hybrid finite element
discretisations of the flow problem have been combined with globally
implicit, reactive multicomponent models. Novel reduction methods for
the latter rely on the linear transformation of the equation systems and
variables and lead to the consideration of conservation quantities
which can be handled efficiently, as a part of the transport – reaction
– equations decouples. Another approach that has been pursued
simultaneously relies on a modified Newton method and results in
efficiency enhancements by the neglection of coupling terms in the
Jacobian matrix. This algorithm can be applied fully adaptively, in 1D
as well as in 2D. Both approaches could be combined with adaptive
techniques for the automatic, efficient choice of time steps and spatial
grid sizes, which makes the calculation of these complex problems
feasible on PCs.


Prechtel, A., Hoffmann, J., Kräutle, S., & Knabner, P. (2006). Reaktive Mehrkomponentenprobleme: Sicherung von Effizienz und Zuverlässigkeit. In Modellierung und Prognose von Natural Attenuation-Prozessen im Untergrund. (pp. 75-90). Dresden.

Zuletzt aktualisiert 2019-10-07 um 13:38