MPFA (Multi Point Flux Approximation) und gemischt-hybride Finite Element Methoden für Fluss und Transport in porösen Medien

Drittmittelfinanzierte Einzelförderung

Details zum Projekt

Prof. Dr. Peter Knabner

Dr. Alexander Prechtel
Fabian Brunner

Beteiligte FAU-Organisationseinheiten:
Lehrstuhl für Angewandte Mathematik

Mittelgeber: Deutscher Akademischer Austauschdienst (DAAD)
Projektstart: 01.01.2012
Projektende: 31.12.2013


Multicomponent reactive transport in natural porous media
Lehrstuhl für Angewandte Mathematik
Multiphase flow in natural porous media
Lehrstuhl für Angewandte Mathematik

Abstract (fachliche Beschreibung):

Nonlinear (multiphase) flow and reactive multicomponent transport
problems in highly heterogeneous porous media and their numerical
simulation are of great interest for evaluating site remediation, energy
exploitation or CO2 sequestration scenarios.   The resulting
advection-diffusion-reaction-systems are coupled nonlinear parabolic
partial differential equations, and we have parabolic or elliptic
nonlinear flow equations, possibly degenerate. The development of
convergent and efficient numerical schemes is very challenging and the
mixed (hybrid) finite element method M(H)FEM and the multipoint flux
approximation MPFA are powerful locally mass conservative choices. They
offer also the advantage of continuous flux approximations over the
element faces.  Analogies between the two techniques should help to
prove order of convergence estimates and monotonicity for the
multicomponent transport problems, but also for multiphase flow. 
Furthermore numerical diffusion of the schemes should be quantified to
assess the accuracy of the methods.  Simulation examples should include
realistic scenarios on heterogeneous, log normally distributed random
parameter fields.

Externe Partner

University of Bergen


Suciu, N., Radu, A.F., Prechtel, A., Brunner, F., & Knabner, P. (2013). A coupled finite element-global random walk approach to advection-dominated transport in porous media with random hydraulic conductivity. Journal of Computational and Applied Mathematics, 246, 27-37.

Zuletzt aktualisiert 2019-08-04 um 10:40