Ultra-Skalierbare Multiphysiksimulationen für Erstarrungsprozesse in Metallen

Drittmittelfinanzierte Gruppenförderung - Gesamtprojekt


Details zum Projekt

Projektleiter/in:
Prof. Dr. Ulrich Rüde

Projektbeteiligte:
Prof. Dr. Gerhard Wellein
Prof. Dr. Harald Köstler
Martin Bauer

Beteiligte FAU-Organisationseinheiten:
Lehrstuhl für Informatik 10 (Systemsimulation)
Professur für Höchstleistungsrechnen

Mittelgeber: BMBF / Verbundprojekt
Akronym: SKAMPY
Projektstart: 01.02.2016
Projektende: 31.01.2019


Abstract (fachliche Beschreibung):

Komplexe Phänomene in den Natur- und Ingenieurwissenschaften werden dank der rapide steigenden Rechenleistung immer öfter mit Hilfe von realitätsgetreuen Simulationstechniken erforscht. Das daraus entstandene Fachgebiet Computational Science and Engineering (CSE) gilt deshalb als neue, dritte Säule der Wissenschaft, die die beiden klassischen Säulen Theorie und Experiment ergänzt und verstärkt. Im Kern des CSE geht es darum, leistungsfähige Simulationsmethoden für aktuelle und zukünftige Höchstleistungsrechner zu entwerfen, zu analysieren und sie für die praktische Nutzung robust, benutzerfreundlich und zuverlässig zu implementieren.

Für die Entwicklung neuer Materialien mit besseren Werkstoffeigenschaften, sowie für die Optimierung von Herstellungs- und Fertigungsprozessen sind moderne und hocheffiziente Simulationstechniken heute unverzichtbar. Sie ersetzen hier zu einem großen Teil die traditionellen zeit- und kostenintensiven Experimente, die sonst für die Materialentwicklung und die Qualitätssteigerung von Werkstoffkomponenten erforderlich sind. Materialsimulationen bilden dabei jedoch eine große Herausforderung für die Grundlagenforschung und für das Höchstleistungsrechnen.

Die mechanischen Eigenschaften eines Werkstoffes werden ganz wesentlich durch die Ausbildung der Mikrostruktur beim Herstellungsprozess - d.h. bei der Erstarrung aus der Schmelze - festgelegt. Die Simulation des Erstarrungsprozesses kann dabei wichtige neue Erkenntnisse über experimentell nicht beobachtbare Gefügeausbildungsprozesse liefern und dies ermöglicht es, den Einfluss auf die erzielte Struktur systematisch zu analysieren. Hiermit wird es in Zukunft möglich, neue Materialien mit speziellen Eigenschaften virtuell am Computer zu entwerfen.

Simulationsbasierte Forschungs- und Entwicklungsarbeiten für diese Problemstellung erfordern eine sehr feine räumliche und zeitliche Auflösung, um alle relevanten physikalischen Effekte abzubilden und deshalb benötigen sie eine extrem hohe Rechenleistung. Um auf künftigen Großrechensystemen derartige Probleme mit vielen Tausend Rechenknoten lösen zu können, muss die eingesetzte Simulationssoftware nicht nur in der Lage sein, diese vielen Rechenknoten gleichzeitig zu nutzen, sondern sie muss darüber hinaus auch eine maximale Rechenleistung bei möglichst geringem Ressourcenverbrauch liefern. Neben der eigentlichen Rechenzeit gewinnt hier auch der Energieverbrauch der Supercomputer eine erhebliche Bedeutung. Als Software Basis von SKAMPY wird das waLBerla Framework verwendet. In diesem Projekt wird waLBerla nun erweitert um neue anwendungsorientierte Probleme in den Materialwissenschaften zu lösen. Dabei kommen speziell entwickelte Programmiermethoden zum Einsatz, die eine besonders gute Ausnutzung der Supercomputer ermöglichen. Im Rahmen einer vielversprechenden gemeinsamen Machbarkeitsstudie für die Simulation von Erstarrungsprozessen in Metalllegierungen wurde bereits die Leistungsfähigkeit des Ansatzes und die Portierbarkeit auf die Architekturen aller drei deutschen Höchstleistungsrechner gezeigt, so dass das Projektkonsortium nun bestens aufgestellt ist, um Supercomputersimulationen auch für zukünftige, noch deutlich komplexere Forschungsaufgaben nachhaltig nutzbar zu machen.


Externe Partner

Karlsruhe Institute of Technology (KIT)
Hochschule Karlsruhe – Technik und Wirtschaft
TinniT Technologies GmbH


Publikationen

Kohl, N., Hötzer, J., Schornbaum, F., Bauer, M., Godenschwager, C., Köstler, H.,... Rüde, U. (2018). A scalable and extensible checkpointing scheme for massively parallel simulations. International Journal of High Performance Computing Applications. https://dx.doi.org/10.1177/1094342018767736
Wittmann, M., Haag, V., Zeiser, T., Köstler, H., & Wellein, G. (2018). Lattice Boltzmann benchmark kernels as a testbed for performance analysis. Computers & Fluids, 172, 582-592. https://dx.doi.org/10.1016/j.compfluid.2018.03.030
Hönig, J., & Bauer, M. (2018, June). pystencils - Automatic Generation, Optimization and Analysis of Stencil Codes. Poster presentation at ISC High Performance 2018, Frankfurt am Main, DE.
Hammer, J., Eitzinger, J., Hager, G., & Wellein, G. (2017). Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels. In Niethammer C, Gracia J, Hilbrich T, Knüpfer A, Resch MM, Nagel WE (Eds.), Tools for High Performance Computing 2016 (pp. 1--22). Stuttgart, Germany: Cham: Springer International Publishing.

Zuletzt aktualisiert 2019-16-04 um 11:54