Professur für Höchstleistungsrechnen

Address:
Martensstraße 3
91058 Erlangen


Related Project(s)

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

SeASiTe: Selbstadaption für zeitschrittbasierte Simulationstechniken auf heterogenen HPC-Systemen
Prof. Dr. Gerhard Wellein
(01/03/2017 - 29/02/2020)


MeTacca: Metaprogrammierung für Beschleunigerarchitekturen
PD Dr.-Ing. Harald Köstler; Prof. Dr. Gerhard Wellein
(01/01/2017 - 31/12/2019)


ProPE: Process-Oriented Performance Engineering Service Infrastructure for Scientific Software at German HPC Centers
Prof. Dr. Gerhard Wellein
(01/01/2017 - 31/12/2019)


(SPP 1648: Software for Exascale Computing):
SPPEXA: EXASTEEL II - Bridging Scales for Multiphase Steels
Prof. Dr. Gerhard Wellein
(01/01/2016 - 31/12/2018)


(SPP 1648: Software for Exascale Computing):
SPPEXA: Equipping Sparse Solvers for Exascale II (ESSEX-II)
Prof. Dr. Gerhard Wellein
(01/01/2016 - 31/12/2018)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Hofmann, J., Hager, G., Wellein, G., & Fey, D. (2017). An Analysis of Core- and Chip-Level Architectural Features in Four Generations of Intel Server Processors. In High Performance Computing. ISC 2017. Lecture Notes in Computer Science, vol 10266. Frankfurt: Cham: Springer.
Anzt, H., Gates, M., Dongarra, J., Kreutzer, M., Wellein, G., & Köhler, M. (2017). Preconditioned Krylov solvers on GPUs. Parallel Computing, 68, 32-44. https://dx.doi.org/10.1016/j.parco.2017.05.006
Röhl, T., Eitzinger, J., Hager, G., & Wellein, G. (2017). LIKWID monitoring stack: A flexible framework enabling job specific performance monitoring for the masses. (pp. 781-784). Institute of Electrical and Electronics Engineers Inc..
Wellein, G., Alvermann, A., Fehske, H., Hager, G., Kreutzer, M., Lang, B.,... Galgon, M. (2016). High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations. Journal of Computational Physics, 325, 226-243. https://dx.doi.org/10.1016/j.jcp.2016.08.027
Hager, G., Eitzinger, J., Habich, J., & Wellein, G. (2016). Exploring performance and power properties of modern multi-core chips via simple machine models. Concurrency and Computation-Practice & Experience, 28(2), 189-210. https://dx.doi.org/10.1002/cpe.3180
Hofmann, J., Fey, D., Eitzinger, J., Hager, G., & Wellein, G. (2016). Analysis of Intel's Haswell Microarchitecture Using the ECM Model and Microbenchmarks. In Architecture of Computing Systems -- ARCS 2016: 29th International Conference, Nuremberg, Germany, April 4-7, 2016, Proceedings (pp. 210-222). Nuremberg: Cham: Springer International Publishing.
Hofmann, J., Fey, D., Riedman, M., Eitzinger, J., Hager, G., & Wellein, G. (2016). Performance analysis of the Kahan-enhanced scalar product on current multi-corecore and many-core processors. Concurrency and Computation-Practice & Experience, 28(12). https://dx.doi.org/10.1002/cpe.3921
Thies, J., Galgon, M., Shahzad, F., Alvermann, A., Kreutzer, M., Pieper, A.,... Wellein, G. (2016). Towards an exascale enabled sparse solver repository. Springer Verlag.
Wellein, G., Galgon, M., Fehske, H., Hager, G., Kreutzer, M., Pieper, A.,... Basermann, A. (2016). GHOST: Building Blocks for High Performance Sparse Linear Algebra on Heterogeneous Systems. International Journal of Parallel Programming, 1-27. https://dx.doi.org/10.1007/s10766-016-0464-z
Wellein, G., Anzt, H., Dongarra, J., Kreutzer, M., & Köhler, M. (2016). Efficiency of general Krylov methods on GPUs - An experimental study. (pp. 683-691). IEEE Computer Society.
Anzt, H., Kreutzer, M., Ponce, E., Peterson, G.D., Wellein, G., & Dongarra, J. (2016). Optimization and performance evaluation of the IDR iterative Krylov solver on GPUs. International Journal of High Performance Computing Applications. https://dx.doi.org/10.1177/1094342016646844
Bauer, S., Bunge, H.-P., Drzisga, D.P., Gmeiner, B., Huber, M., John, L.,... Wohlmuth, B.I. (2016). Hybrid Parallel Multigrid Methods for Geodynamical Simulations. In Bungartz H., Neumann P., Nagel E. (Eds.), 113 (pp. 211-235). Berlin, Heidelberg, New York: Springer.
Feichtinger, C., Habich, J., Köstler, H., Rüde, U., & Aoki, T. (2015). Performance Modeling and Analysis of Heterogeneous Lattice Boltzmann Simulations on CPU-GPU Clusters. Parallel Computing, 46, 1-13. https://dx.doi.org/10.1016/j.parco.2014.12.003
Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., & Wohlmuth, B.I. (2015). Towards Textbook Efficiency for Parallel Multigrid. Numerical Mathematics-Theory Methods and Applications, 8(1), 22-46. https://dx.doi.org/10.4208/nmtma.2015.w10si
Kreutzer, M., Hager, G., Wellein, G., Alvermann, A., Fehske, H., & Pieper, A. (2015). Performance Engineering of the Kernel Polynomal Method on Large-Scale CPU-GPU Systems. In IEEE (Eds.), Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (pp. 417-426). Hyderabad, India, IN.
Shahzad, F., Kreutzer, M., Zeiser, T., Machado, R., Pieper, A., Hager, G., & Wellein, G. (2015). Building a Fault Tolerant Application Using the GASPI Communication Layer. In Proceedings of FTS 2015 (pp. 580-587). Chicago, IL: in conjunction with IEEE Cluster 2015: IEEE.
Wittmann, M., Hager, G., Zeiser, T., Treibig, J., & Wellein, G. (2015). Chip-level and multi-node analysis of energy-optimized lattice Boltzmann CFD simulations. Concurrency and Computation-Practice & Experience, 1-5. https://dx.doi.org/10.1002/cpe.3489
Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., & Wohlmuth, B.I. (2015). Performance and Scalability of Hierarchical Hybrid Multigrid Solvers for Stokes Systems. SIAM Journal on Scientific Computing, 37(2), C143 - C 168. https://dx.doi.org/10.1137/130941353
Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A.,... Fehske, H. (2015). Increasing the performance of the Jacobi-Davidson method by blocking. SIAM Journal on Scientific Computing, DLR Portal ISSN 1064-8275, 1-27. https://dx.doi.org/10.1137/140976017
Hofmann, J., Fey, D., Eitzinger, J., Hager, G., & Wellein, G. (2015). Performance analysis of the Kahan-enhanced scalar product on current multicore processors. In Accepted for PPAM 2015 (pp. 1-10). Krakow, Poland, PL.

Last updated on 2016-05-05 at 04:58