Chair of Applied Dynamics

Address:
Immerwahrstraße 1
91058 Erlangen


Research Fields

biomechanics
motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control


Related Project(s)

Go to first page Go to previous page 2 of 2 Go to next page Go to last page

MKS-Menschenmodelle: Optimal control of biomechanical MBS-Digital Human Models for simulation in the virtual assembly planning
Prof. Dr.-Ing. Sigrid Leyendecker
(01/11/2015 - 31/10/2018)


Protein flexibility and conformational ensembles from kino-geometric modeling, sampling and motion planning.
Prof. Dr.-Ing. Sigrid Leyendecker
(01/06/2014)


(bionicum research):
Development of artificial muscles as actors and sensors on the basis of dielectric elastomers
Prof. Dr.-Ing. Jörg Franke; Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2012 - 31/03/2018)


Space time discretization for flexible multibody systems and multisymplectic variational integrators
Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2011)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 10 Go to next page Go to last page

Eisentraudt, M., & Leyendecker, S. (2019). Epistemic uncertainty in optimal control simulation. Mechanical Systems and Signal Processing, 121, 876-889. https://dx.doi.org/10.1016/j.ymssp.2018.12.001
Budday, D. (2019). High-Dimensional Robotics at the Nanoscale — Kino-Geometric Modeling of Proteins and Molecular Mechanisms (Dissertation).
Scheiterer, E.S. (2019). Simulation of a prosthetic foot modelled by a predeformed geometrically exact beam (Master thesis).
Penner, J., & Leyendecker, S. (2019). Biomechanical simulations with dynamic muscle paths on NURBS surfaces. In Proceedings of the GAMM Annual Meeting. Vienna, AT.
Pivovarov, D., Willner, K., Steinmann, P., Brumme, S., Müller, M., Srisupattarawanit, T.,... Leyendecker, S. (2019). Challenges of order reduction techniques for problems involving polymorphic uncertainty. GAMM-Mitteilungen. https://dx.doi.org/10.1002/gamm.201900011
Wenger, T., Ober-Blöbaum, S., & Leyendecker, S. (2018). Numerical properties of mixed order variational integrators applied to dynamical multirate systems. Halle, DE.
Glaas, D., & Leyendecker, S. (2018). Variational integrator based optimal feedback control for constrained mechanical systems. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik. https://dx.doi.org/10.1002/zamm.201700221
Duong, M.T., Ach, T., Alkassar, M., Dittrich, S., & Leyendecker, S. (2018). Numerical simulation of cardiac muscles in a rat biventricular model. Glasgow, GB.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation. Mechanical Systems and Signal Processing, 126, 590-608. https://dx.doi.org/10.1016/j.ymssp.2019.02.036
Leyendecker, S., & Kosmas, O. (2018). Variational integrators for orbital problems using frequency estimation. Advances in Computational Mathematics, 1-21. https://dx.doi.org/10.1007/s10444-018-9603-y
Bentaleb, T., Pham, M.T., Eberard, D., & Marquis-Favre, W. (2018). Bond graph modeling and analysis of intermediary cooling system of a nuclear power plants. Lyon, FR.
Schlögl, T. (2018). Modelling, simulation and optimal control of dielectric elastomer actuated systems (Dissertation).
Fonseca, R., Budday, D., & van den Bedem, H. (2018). Collision-free poisson motion planning in ultra high-dimensional molecular conformation spaces. Journal of Computational Chemistry. https://dx.doi.org/10.1002/jcc.25138
Leyendecker, S. (2018). Ein dynamisches Manikin mit faserbasierter Modellierung der Skelettmuskulatur.
Budday, D., Leyendecker, S., & van den Bedem, H. (2018). Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion. Journal of Chemical Information and Modeling, 58(10), 2108-2122. https://dx.doi.org/10.1021/acs.jcim.8b00267
Werner, A., Henze, B., Keppler, M., Loeffl, F., Leyendecker, S., & Ott, C. (2018). Structure preserving Multi-Contact Balance Control for Series-Elastic and Visco-Elastic Humanoid Robots. In 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) (pp. 1233-1240). Madrid, ES: NEW YORK: IEEE.
Phutane, U., Roller, M., & Leyendecker, S. (2018). Optimal control simulations of two finger grasping. München, DE.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation using variational integrators. München, DE.
Budday, D., Leyendecker, S., & van den Bedem, H. (2018). Bridging protein rigidity theory and normal modes using kino-geometric analysis. München, DE.
Duong, M.T., Holz, D., Ach, T., Binnewitt, S.V., Stegmann, H., Dittrich, S.,... Leyendecker, S. (2018). Simulation of cardiac electromechanics of a rat left ventricle. München, DE.


Publications in addition (Download BibTeX)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Phutane, U. (2015). On the comparison of different muscle model dynamics using variational integrators (Master thesis).
Jung, P., Leyendecker, S., Linn, J., & Ortiz, M. (2011). A discrete mechanics approach to Cosserat rod theory - Part I: static equilibria. International Journal For Numerical Methods in Engineering, Vol. 85, 31-60. https://dx.doi.org/10.1002/nme.2950
Leyendecker, S. (2011). On optimal control simulations for mechanical systems (Habilitation).
Ober-Blöbaum, S., & Leyendecker, S. (2010). A Variational Approach to Multirate Integration. Mexico City, MX.
Maas, R., Siebert, T., & Leyendecker, S. (2010). Structure preserving simulation of human finger movements. Freudenstadt-Lauterbad, DE.
Leyendecker, S., & Maas, R. (2010). Über diskrete Mechanik und Optimalsteuerung menschlicher Fingerbewegungen. Erlangen, DE.
Ober-Blöbaum, S., & Leyendecker, S. (2010). A variational approach to multirate integration. Paris, FR.
Kanso, E., & Leyendecker, S. (2010). Optimal locomotion of a submerged Cosserat beam. Paris, FR.
Hartmann, C., & Leyendecker, S. (2010). Event-driven molecular dynamics and nonsmooth integration. Paris, FR.
Maas, R., & Leyendecker, S. (2010). Structure preserving optimal control simulation of index finger dynamics. In Proceedings of The First Joint International Conference on Multibody System Dynamics (pp. DVD). Lappeenranta, FI.
Leyendecker, S., & Maas, R. (2010). Structure preserving simulation of optimal index finger trajectories during grasping. In PAMM (pp. 83-84). Karlsruhe, Germany, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Certification with optimal control strategies. In PAMM (pp. 621-622). Karlsruhe, Germany, DE.
Leyendecker, S. (2010). Optimal control of multibody dynamics with uncertainties. München, DE.
Leyendecker, S. (2010). Structure preserving methods in computational multibody dynamics and optimal control. Kaiserslautern, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Optimal control strategies for robust certification. Journal of Computational and Nonlinear Dynamics, Volume 5(Number 031008), 031008. https://dx.doi.org/10.1115/1.4001375
Lang, H., & Linn, J. (2009). A multibody system type modelling approach to geometrically exact rods using geometric finite differences. Lissabon, PT.
Kanso, E., & Leyendecker, S. (2009). Locomotion of a submerged Cosserat beam. In Proceedings of the 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. (pp. DVD, 10 Seiten). San Diego, california, US.
Leyendecker, S. (2009). Discrete mechanics in space-time integration and optimal control. Göttingen, DE.
Leyendecker, S. (2009). Variational integrators in contact problems. Berlin, DE.
Schmidt, B., Leyendecker, S., & Ortiz, M. (2009). Gamma-convergence of variational integrators for constrained systems. Journal of Nonlinear Science, 19(19), 1432-1467. https://dx.doi.org/10.1007/s00332-008-9030-1

Last updated on 2019-24-04 at 10:16