Chair of Applied Dynamics

Address:
Immerwahrstraße 1
91058 Erlangen


Research Fields

biomechanics
motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control


Related Project(s)

Go to first page Go to previous page 2 of 2 Go to next page Go to last page

MKS-Menschenmodelle: Optimal control of biomechanical MBS-Digital Human Models for simulation in the virtual assembly planning
Prof. Dr.-Ing. Sigrid Leyendecker
(01/11/2015 - 31/10/2018)


Protein flexibility and conformational ensembles from kino-geometric modeling, sampling and motion planning.
Prof. Dr.-Ing. Sigrid Leyendecker
(01/06/2014)


(bionicum research):
Development of artificial muscles as actors and sensors on the basis of dielectric elastomers
Prof. Dr.-Ing. Jörg Franke; Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2012 - 31/03/2018)


Space time discretization for flexible multibody systems and multisymplectic variational integrators
Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2011)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 11 Go to next page Go to last page

Phutane, U., Roller, M., Björkenstam, S., & Leyendecker, S. (2020). Optimal Control Simulations of Two-Finger Precision Grasps. In Andrés KecskeméthyFrancisco Geu Flores (Eds.), Multibody Dynamics 2019. (pp. 60-67). Springer.
Penner, J., & Leyendecker, S. (2020). A Hill Muscle Actuated Arm Model with Dynamic Muscle Paths. In Andrés Kecskeméthy, Francisco Geu Flores (Eds.), Multibody Dynamics 2019. (pp. 52-59). Springer.
Duong, M.T., Holz, D., Alkassar, M., Dittrich, S., & Leyendecker, S. (2019). Interaction of the mechano-electrical feedback with passive mechanical models on a 3D rat left ventricle: a computational study. Frontiers in Physiology, 10, 10-41. https://dx.doi.org/10.3389/fphys.2019.01041
Penner, J., & Leyendecker, S. (2019). A Hill muscle actuated arm model with dynamic muscle paths. In Proceedings of the ECCOMAS Multibody Dynamics Conference. Duisburg, DE: Springer International Publishing.
Eisentraudt, M., & Leyendecker, S. (2019). Epistemic uncertainty in optimal control simulation. Mechanical Systems and Signal Processing, 121, 876-889. https://dx.doi.org/10.1016/j.ymssp.2018.12.001
Scheiterer, E.S. (2019). Simulation of a prosthetic foot modelled by a predeformed geometrically exact beam (Master thesis).
Pivovarov, D., Willner, K., Steinmann, P., Brumme, S., Müller, M., Srisupattarawanit, T.,... Leyendecker, S. (2019). Challenges of order reduction techniques for problems involving polymorphic uncertainty. GAMM-Mitteilungen. https://dx.doi.org/10.1002/gamm.201900011
Phutane, U. (2019). Optimal control simulations of two-finger precision grasps. In Proceedings of the 9th ECCOMAS Thematic Conference on Multibody Dynamics. (pp. 60-67).
Pivovarov, D., Hahn, V., Steinmann, P., Willner, K., & Leyendecker, S. (2019). Fuzzy dynamics of multibody systems with polymorphic uncertainty in the material microstructure. Computational Mechanics. https://dx.doi.org/10.1007/s00466-019-01737-9
Penner, J., & Leyendecker, S. (2019). Biomechanical simulations with dynamic muscle paths on NURBS surfaces. In PAMM. Vienna, AT.
Budday, D. (2019). High-Dimensional Robotics at the Nanoscale — Kino-Geometric Modeling of Proteins and Molecular Mechanisms (Dissertation).
Wenger, T., Ober-Blöbaum, S., & Leyendecker, S. (2018). Numerical properties of mixed order variational integrators applied to dynamical multirate systems. In Proceedings of the Conference on the Numerical Solution of Differential and Differential-Algebraic Equations (NUMDIFF-15). Halle, DE.
Glaas, D., & Leyendecker, S. (2018). Variational integrator based optimal feedback control for constrained mechanical systems. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik. https://dx.doi.org/10.1002/zamm.201700221
Duong, M.T., Ach, T., Alkassar, M., Dittrich, S., & Leyendecker, S. (2018). Numerical simulation of cardiac muscles in a rat biventricular model. In Proceedings of the 6th European Conference on Computational Mechanics (ECCM 6) and 7th European Conference on Computational Fluid Dynamics (ECFD 7). Glasgow, GB.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation. Mechanical Systems and Signal Processing, 126, 590-608. https://dx.doi.org/10.1016/j.ymssp.2019.02.036
Leyendecker, S., & Kosmas, O. (2018). Variational integrators for orbital problems using frequency estimation. Advances in Computational Mathematics, 1-21. https://dx.doi.org/10.1007/s10444-018-9603-y
Schlögl, T. (2018). Modelling, simulation and optimal control of dielectric elastomer actuated systems (Dissertation).
Bentaleb, T., Pham, M.T., Eberard, D., & Marquis-Favre, W. (2018). Bond graph modeling and analysis of intermediary cooling system of a nuclear power plants. Lyon, FR.
Björkenstam, S., Carlson, J.S., Linn, J., Leyendecker, S., & Lennartson, B. (2018). Inverse Dynamics for Discrete Geometric Mechanics of Multibody Systems with Application to Direct Optimal Control. Journal of Computational and Nonlinear Dynamics.
Martonova, D. (2018). Modellierung von Wachstumsprozessen unter dem Einfluss von elastischen Spannungen mit hyperelastischen Energiedichten (Master thesis).


Publications in addition (Download BibTeX)

Go to first page Go to previous page 4 of 4 Go to next page Go to last page

Leyendecker, S., Betsch, P., & Steinmann, P. (2005). The discrete null space method for multibody dynamics with application to closed loop systems. Bad Herrenalb, DE.
Leyendecker, S., Betsch, P., & Steinmann, P. (2005). Mechanical integration of multibody dynamics by the discrete null space method. In Proceedings of the International Conference on Advances in Computational Multibody Dynamics (pp. cd). Madrid, Spain, ES.
Leyendecker, S., Betsch, P., & Steinmann, P. (2004). Mechanical Integrators for Constrained Dynamics of Geometrically Exact Beams. In PAMM, Vol. 4 (pp. 344-345). Dresden, Germany, DE.
Leyendecker, S., Betsch, P., & Steinmann, P. (2004). Mechanical integrators for constrained Hamiltonian systems. Sterzing, IT.
Steinmann, P., Betsch, P., & Leyendecker, S. (2004). Energy-conserving integration of constrained Hamiltonian systems – a comparison of approaches. Computational Mechanics, 33(3), 174-185. https://dx.doi.org/10.1007/s00466-003-0516-2
Leyendecker, S., Betsch, P., & Steinmann, P. (2003). Conserving integration schemes for constrained mechanical systems. Sydney.
Leyendecker, S. (2003). Mechanische Integratoren für zwei Arten von Gleichungen für Bewegungen mit Zwangsbedingungen. Kaiserslautern.
Lauer, S., Betsch, P., & Steinmann, P. (2003). Mechanical integrators for constrained mechanical systems. Padua, IT.

Last updated on 2019-24-04 at 10:16