Chair of Applied Dynamics

Address:
Immerwahrstraße 1
91058 Erlangen


Research Fields

biomechanics
motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control


Related Project(s)

Go to first page Go to previous page 2 of 2 Go to next page Go to last page

MKS-Menschenmodelle: Optimal control of biomechanical MBS-Digital Human Models for simulation in the virtual assembly planning
Prof. Dr.-Ing. Sigrid Leyendecker
(01/11/2015 - 31/10/2018)


Protein flexibility and conformational ensembles from kino-geometric modeling, sampling and motion planning.
Prof. Dr.-Ing. Sigrid Leyendecker
(01/06/2014)


(bionicum research):
Development of artificial muscles as actors and sensors on the basis of dielectric elastomers
Prof. Dr.-Ing. Jörg Franke; Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2012 - 31/03/2018)


Space time discretization for flexible multibody systems and multisymplectic variational integrators
Prof. Dr.-Ing. Sigrid Leyendecker
(01/10/2011)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 10 Go to next page Go to last page

Eisentraudt, M., & Leyendecker, S. (2019). Epistemic uncertainty in optimal control simulation. Mechanical Systems and Signal Processing, 121, 876-889. https://dx.doi.org/10.1016/j.ymssp.2018.12.001
Penner, J., & Leyendecker, S. (2019). Biomechanical simulations with dynamic muscle paths on NURBS surfaces. In Proceedings of the GAMM Annual Meeting. Vienna, AT.
Budday, D. (2019). High-Dimensional Robotics at the Nanoscale — Kino-Geometric Modeling of Proteins and Molecular Mechanisms (Dissertation).
Scheiterer, E.S. (2019). Simulation of a prosthetic foot modelled by a predeformed geometrically exact beam (Master thesis).
Wenger, T., Ober-Blöbaum, S., & Leyendecker, S. (2018). Numerical properties of mixed order variational integrators applied to dynamical multirate systems. Halle, DE.
Glaas, D., & Leyendecker, S. (2018). Variational integrator based optimal feedback control for constrained mechanical systems. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik. https://dx.doi.org/10.1002/zamm.201700221
Duong, M.T., Ach, T., Alkassar, M., Dittrich, S., & Leyendecker, S. (2018). Numerical simulation of cardiac muscles in a rat biventricular model. Glasgow, GB.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation. Mechanical Systems and Signal Processing, 126, 590-608. https://dx.doi.org/10.1016/j.ymssp.2019.02.036
Leyendecker, S., & Kosmas, O. (2018). Variational integrators for orbital problems using frequency estimation. Advances in Computational Mathematics, 1-21. https://dx.doi.org/10.1007/s10444-018-9603-y
Bentaleb, T., Pham, M.T., Eberard, D., & Marquis-Favre, W. (2018). Bond graph modeling and analysis of intermediary cooling system of a nuclear power plants. Lyon, FR.
Schlögl, T. (2018). Modelling, simulation and optimal control of dielectric elastomer actuated systems (Dissertation).
Werner, A., Henze, B., Keppler, M., Loeffl, F., Leyendecker, S., & Ott, C. (2018). Structure preserving Multi-Contact Balance Control for Series-Elastic and Visco-Elastic Humanoid Robots. In 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) (pp. 1233-1240). Madrid, ES: NEW YORK: IEEE.
Bentaleb, T., & Garulli, A. (2018). Model-Based Control Techniques for Turbomachinery. LAP LAMBERT Academic Publishing.
Penner, J., & Leyendecker, S. (2018). Optimization based muscle wrapping in biomechanical multibody simulations. München, DE.
Duong, M.T., Holz, D., Ach, T., Binnewitt, S.V., Stegmann, H., Dittrich, S.,... Leyendecker, S. (2018). Simulation of cardiac electromechanics of a rat left ventricle. München, DE.
Fonseca, R., Budday, D., & van den Bedem, H. (2018). Collision-free poisson motion planning in ultra high-dimensional molecular conformation spaces. Journal of Computational Chemistry. https://dx.doi.org/10.1002/jcc.25138
Phutane, U., Roller, M., & Leyendecker, S. (2018). Optimal control simulations of two finger grasping. München, DE.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation using variational integrators. München, DE.
Leitz, T., & Leyendecker, S. (2018). Galerkin Lie-group variational integrators based on unit quaternion interpolation. Computer Methods in Applied Mechanics and Engineering, 338, 333-361. https://dx.doi.org/10.1016/j.cma.2018.04.022
Budday, D., Leyendecker, S., & van den Bedem, H. (2018). Bridging protein rigidity theory and normal modes using kino-geometric analysis. München, DE.


Publications in addition (Download BibTeX)

Go to first page Go to previous page 4 of 4 Go to next page Go to last page

Leyendecker, S., Betsch, P., & Steinmann, P. (2005). Conserving integration of constrained geometrically nonlinear beam dynamics. In Proceedings of the Sixth Conference on Structural Dynamics (pp. 2021-2026). Paris, France, FR.
Leyendecker, S., Betsch, P., & Steinmann, P. (2004). Mechanical integrators for constrained Hamiltonian systems. Sterzing, IT.
Leyendecker, S., Betsch, P., & Steinmann, P. (2004). Mechanical Integrators for Constrained Dynamics of Geometrically Exact Beams. In PAMM, Vol. 4 (pp. 344-345). Dresden, Germany, DE.
Steinmann, P., Betsch, P., & Leyendecker, S. (2004). Energy-conserving integration of constrained Hamiltonian systems – a comparison of approaches. Computational Mechanics, 33(3), 174-185. https://dx.doi.org/10.1007/s00466-003-0516-2
Leyendecker, S., Betsch, P., & Steinmann, P. (2003). Conserving integration schemes for constrained mechanical systems. Sydney.
Leyendecker, S. (2003). Mechanische Integratoren für zwei Arten von Gleichungen für Bewegungen mit Zwangsbedingungen. Kaiserslautern.
Lauer, S., Betsch, P., & Steinmann, P. (2003). Mechanical integrators for constrained mechanical systems. Padua, IT.

Last updated on 2019-24-04 at 10:16