Chair of Applied Dynamics

Address:
Immerwahrstraße 1
91058 Erlangen


Research Fields

biomechanics
motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control


Related Project(s)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Ein mechanisch-geometrischer Ansatz zu Charakterisierung makromolekularer Ensembles
Prof. Dr.-Ing. Sigrid Leyendecker
(01/06/2019 - 31/05/2021)


(Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)):
GRK2423 - P9: Teilprojekt P9 - Adaptive Dynamic Fracture Simulation
Prof. Dr. Thorsten Pöschel; Prof. Dr.-Ing. Sigrid Leyendecker
(02/01/2019 - 30/06/2023)


(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P2: Teilprojekt P2 - Atomistics of Crack-Heterogeneity Interactions
Prof. Dr.-Ing. Erik Bitzek; Prof. Dr.-Ing. Sigrid Leyendecker
(02/01/2019 - 30/06/2023)


Computational and experimental biomechanics
Prof. Dr.-Ing. Sigrid Leyendecker
(01/09/2017)


(A dynamic manikin with fiber-based modeling of skeletal musculature):
DYMARA: Muscle paths in the biomechanical simulation of human movement and MBS integration
Prof. Dr.-Ing. Sigrid Leyendecker
(01/12/2016 - 30/11/2019)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 12 Go to next page Go to last page

Duong, M.T., Holz, D., Alkassar, M., Dittrich, S., & Leyendecker, S. (2019). Interaction of the mechano-electrical feedback with passive mechanical models on a 3D rat left ventricle: a computational study. Frontiers in Physiology, 10, 10-41. https://dx.doi.org/10.3389/fphys.2019.01041
Penner, J., & Leyendecker, S. (2019). A Hill muscle actuated arm model with dynamic muscle paths. In Proceedings of the ECCOMAS Multibody Dynamics Conference. Duisburg, DE: Springer International Publishing.
Eisentraudt, M., & Leyendecker, S. (2019). Epistemic uncertainty in optimal control simulation. Mechanical Systems and Signal Processing, 121, 876-889. https://dx.doi.org/10.1016/j.ymssp.2018.12.001
Scheiterer, E.S. (2019). Simulation of a prosthetic foot modelled by a predeformed geometrically exact beam (Master thesis).
Penner, J., & Leyendecker, S. (2019). A Hill Muscle Actuated Arm Model with Dynamic Muscle Paths. In Andrés Kecskeméthy, Francisco Geu Flores (Eds.), Multibody Dynamics 2019. (pp. 52-59). Springer.
Phutane, U., Roller, M., Björkenstam, S., & Leyendecker, S. (2019). Optimal Control Simulations of Two-Finger Precision Grasps. In Andrés KecskeméthyFrancisco Geu Flores (Eds.), Multibody Dynamics 2019. (pp. 60-67). Springer.
Pivovarov, D., Hahn, V., Steinmann, P., Willner, K., & Leyendecker, S. (2019). Fuzzy dynamics of multibody systems with polymorphic uncertainty in the material microstructure. Computational Mechanics. https://dx.doi.org/10.1007/s00466-019-01737-9
Budday, D. (2019). High-Dimensional Robotics at the Nanoscale — Kino-Geometric Modeling of Proteins and Molecular Mechanisms (Dissertation).
Holz, D., Duong, M.T., Kim, M., Alkassar, M., Dittrich, S., & Leyendecker, S. (2019). Nonlinear fibre distribution in a finite element model of a human left ventricle for sparse and non-constant data sets. In Proceedings of the 8th GACM Colloquium on Computational Mechanics. Kassel, DE.
Holz, D., Duong, M.T., Kim, M., Alkassar, M., Dittrich, S., & Leyendecker, S. (2019). Nonlinear fibre distribution in a finite element model of a human left ventricle for sparse and non-constant data sets. In Proceedings of the 8th GACM Colloquium on Computational Mechanics. Kassel, DE.
Holz, D., Duong, M.T., Kim, M., Alkassar, M., Dittrich, S., & Leyendecker, S. (2019). Nonlinear fibre distribution in cardiac modelling. In Proceedings of the 25th Congress of the European Society of Biomechanics. Wien, AT.
Phutane, U., Roller, M., Björkenstam, S., & Leyendecker, S. (2019). Optimal control simulations of two-finger precision grasps. In ECCOMAS (pp. 60-67). Springer.
Holz, D., Duong, M.T., Martonova, D., Alkassar, M., Dittrich, S., & Leyendecker, S. (2019). Möglichkeiten und Perspektiven der Modellierung und Simulation. In Tagungsband Wissenschaftliche Jahrestagung der Deutschen Gesellschaft für Thorax-, Herz- und Gefäßchirurgie. Wiesbaden, DE.
Holz, D., Duong, M.T., Alkassar, M., Dittrich, S., & Leyendecker, S. (2019). Computational study of ventricular fibrillation by considering a strongly coupled electromechanical rat heart model. In Proceedings in Applied Mathematics and Mechanics. Wien.
Holz, D., Duong, M.T., Alkassar, M., Dittrich, S., & Leyendecker, S. (2019). Computational study of ventricular fibrillation by considering a strongly coupled electromechanical rat heart model. In Proceedings of the GAMM Annual Meeting. Wien, AT.
Pivovarov, D., Willner, K., Steinmann, P., Brumme, S., Müller, M., Srisupattarawanit, T.,... Leyendecker, S. (2019). Challenges of order reduction techniques for problems involving polymorphic uncertainty. GAMM-Mitteilungen. https://dx.doi.org/10.1002/gamm.201900011
Penner, J., & Leyendecker, S. (2019). Biomechanical simulations with dynamic muscle paths on NURBS surfaces. In PAMM. Vienna, AT.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation using variational integrators. In PAMM. München, DE: Wiley Online Library.
Wenger, T., Ober-Blöbaum, S., & Leyendecker, S. (2018). Numerical properties of mixed order variational integrators applied to dynamical multirate systems. In Proceedings of the Conference on the Numerical Solution of Differential and Differential-Algebraic Equations (NUMDIFF-15). Halle, DE.
Glaas, D., & Leyendecker, S. (2018). Variational integrator based optimal feedback control for constrained mechanical systems. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik. https://dx.doi.org/10.1002/zamm.201700221


Publications in addition (Download BibTeX)

Go to first page Go to previous page 4 of 5 Go to next page Go to last page

Leyendecker, S. (2008). Two aspects of variational integrators for constrained systems: Gamma-convergence and discrete null space method. Berlin, DE.
Leyendecker, S., Betsch, P., & Steinmann, P. (2008). The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part III: Flexible Multibody Dynamics. Multibody System Dynamics, Volume 19(1-2), 45-72. https://dx.doi.org/10.1007/s11044-007-9056-4
Leyendecker, S., Ortiz, M., & Schmidt, B. (2008). On Gamma-convergence of variational integrators for constrained systems. Venice, IT.
Leyendecker, S. (2008). Structure preserving simulation and optimal control of multibody dynamics. Stuttgart, DE.
Leyendecker, S. (2008). Variational integrators in discrete time and space mechanics. Berlin, DE.
Leyendecker, S. (2008). Discrete mechanics and optimal control of multibody dynamics. Erlangen.
Leyendecker, S. (2007). Mechanical integration and optimal control of constrained multibody dynamics. Pasadena, California, US.
Leyendecker, S., Marsden, J.E., & Ortiz, M. (2007). On the relation of topology and analysis in discrete mechanics. In Proceedings of the 6th International Congress on Industrial and Applied Mathematics. Zürich, CH.
Leyendecker, S. (2007). Efficient integration and optimal control for constrained multibody dynamics. Karlsruhe, DE.
Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., & Ortiz, M. (2007). A variational discrete null space method in constrained dynamics and optimal control. In Proceedings of the 9th U.S. National Congress on Computational Mechanics. Berkley, California, US.
Leyendecker, S. (2007). Variational integrators and optimal control of constrained systems. Los Angeles, California, US.
Leyendecker, S. (2007). From efficient mechanical integration of multibody dynamics towards its optimal control. Pasadena, California, US.
Leyendecker, S. (2007). Conserving discrete constrained multibody dynamics. Pasadena, California, US.
Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., & Ortiz, M. (2007). Discrete mechanics and optimal control for constrained multibody dynamics. In Proceedings of the 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (pp. DVD, 10 Seiten). Las Vegas, Nevada, US.
Leyendecker, S. (2006). Mechanical integrators for constrained dynamical systems in flexible multibody dynamics. Los Angeles, California, US.
Steinmann, P., Leyendecker, S., & Betsch, P. (2006). A computational approach to nonlinear dynamics of constrained dynamical systems. In Proceedings of the 6th European Solid Mechanics Conference. Budapest, HU.
Leyendecker, S., Betsch, P., & Steinmann, P. (2006). Mechanical integrators for nonlinear flexible multibody dynamics. In Proceedings of the Dynamics’ day. Kaiserslautern, DE.
Leyendecker, S., Betsch, P., & Steinmann, P. (2006). Mechanical integrators for nonlinear flexible multibody dynamics. In Proceedings of the III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering (pp. cd, 14 Seiten). Lisbon, Portugal, PT.
Leyendecker, S., Betsch, P., & Steinmann, P. (2006). Efficient integration of flexible multibody dynamics. In PAMM (pp. 99-100). Berlin, Germany, DE.
Leyendecker, S. (2006). Various mechanical integrators for constrained dynamical systems. Los Angeles, California, US.

Last updated on 2019-24-04 at 10:16