Chair of Applied Dynamics

Address:
Immerwahrstraße 1
91058 Erlangen


Research Fields

biomechanics
motion capturing
multibody dynamics and robotics
structure preserving simulation and optimal control


Related Project(s)

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P2: Teilprojekt P2 - Atomistics of Crack-Heterogeneity Interactions
Prof. Dr.-Ing. Erik Bitzek; Prof. Dr.-Ing. Sigrid Leyendecker
(02/01/2019 - 30/06/2023)


(Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)):
GRK2423 - P9: Teilprojekt P9 - Adaptive Dynamic Fracture Simulation
Prof. Dr.-Ing. Sigrid Leyendecker; Prof. Dr. Thorsten Pöschel
(02/01/2019 - 30/06/2023)


(A dynamic manikin with fiber-based modeling of skeletal musculature):
DYMARA: Muscle paths in the biomechanical simulation of human movement and MBS integration
Prof. Dr.-Ing. Sigrid Leyendecker
(01/12/2016 - 30/11/2019)


Etablierung eines Herzunterstützungssystems basierend auf einer dem Herzbeutel nachgebildeten kontraktilen Membran
(Establishment of a heart support system as a contractile membrane based on the pericardium)
Prof. Dr.-Ing. Sigrid Leyendecker
(01/05/2016 - 31/12/2018)


(SPP 1886: Polymorphic uncertainty modelling for the numerical design of structures):
Dynamic analysis of prosthetic structures with polymorphic uncertainty
Prof. Dr.-Ing. Sigrid Leyendecker
(01/01/2016 - 31/12/2019)



Publications (Download BibTeX)

Go to first page Go to previous page 1 of 11 Go to next page Go to last page

Phutane, U., Roller, M., Björkenstam, S., & Leyendecker, S. (2020). Optimal Control Simulations of Two-Finger Precision Grasps. In Andrés KecskeméthyFrancisco Geu Flores (Eds.), Multibody Dynamics 2019. (pp. 60-67). Springer.
Penner, J., & Leyendecker, S. (2019). A Hill muscle actuated arm model with dynamic muscle paths. In Proceedings of the 9th ECCOMAS Thematic Conference on Multibody Dynamics (pp. 52 - 59). Duisburg, DE: Springer International Publishing.
Eisentraudt, M., & Leyendecker, S. (2019). Epistemic uncertainty in optimal control simulation. Mechanical Systems and Signal Processing, 121, 876-889. https://dx.doi.org/10.1016/j.ymssp.2018.12.001
Pivovarov, D., Willner, K., Steinmann, P., Brumme, S., Müller, M., Srisupattarawanit, T.,... Leyendecker, S. (2019). Challenges of order reduction techniques for problems involving polymorphic uncertainty. GAMM-Mitteilungen. https://dx.doi.org/10.1002/gamm.201900011
Scheiterer, E.S. (2019). Simulation of a prosthetic foot modelled by a predeformed geometrically exact beam (Master thesis).
Pivovarov, D., Hahn, V., Steinmann, P., Willner, K., & Leyendecker, S. (2019). Fuzzy dynamics of multibody systems with polymorphic uncertainty in the material microstructure. Computational Mechanics. https://dx.doi.org/10.1007/s00466-019-01737-9
Penner, J., & Leyendecker, S. (2019). Biomechanical simulations with dynamic muscle paths on NURBS surfaces. In Proceedings of the GAMM Annual Meeting. Vienna, AT.
Budday, D. (2019). High-Dimensional Robotics at the Nanoscale — Kino-Geometric Modeling of Proteins and Molecular Mechanisms (Dissertation).
Wenger, T., Ober-Blöbaum, S., & Leyendecker, S. (2018). Numerical properties of mixed order variational integrators applied to dynamical multirate systems. Halle, DE.
Glaas, D., & Leyendecker, S. (2018). Variational integrator based optimal feedback control for constrained mechanical systems. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik. https://dx.doi.org/10.1002/zamm.201700221
Duong, M.T., Ach, T., Alkassar, M., Dittrich, S., & Leyendecker, S. (2018). Numerical simulation of cardiac muscles in a rat biventricular model. Glasgow, GB.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation. Mechanical Systems and Signal Processing, 126, 590-608. https://dx.doi.org/10.1016/j.ymssp.2019.02.036
Leyendecker, S., & Kosmas, O. (2018). Variational integrators for orbital problems using frequency estimation. Advances in Computational Mathematics, 1-21. https://dx.doi.org/10.1007/s10444-018-9603-y
Bentaleb, T., Pham, M.T., Eberard, D., & Marquis-Favre, W. (2018). Bond graph modeling and analysis of intermediary cooling system of a nuclear power plants. Lyon, FR.
Schlögl, T. (2018). Modelling, simulation and optimal control of dielectric elastomer actuated systems (Dissertation).
Duong, M.T., Holz, D., Ach, T., Binnewitt, S.V., Stegmann, H., Dittrich, S.,... Leyendecker, S. (2018). Simulation of cardiac electromechanics of a rat left ventricle. München, DE.
Werner, A., Henze, B., Keppler, M., Loeffl, F., Leyendecker, S., & Ott, C. (2018). Structure preserving Multi-Contact Balance Control for Series-Elastic and Visco-Elastic Humanoid Robots. In 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) (pp. 1233-1240). Madrid, ES: NEW YORK: IEEE.
Fonseca, R., Budday, D., & van den Bedem, H. (2018). Collision-free poisson motion planning in ultra high-dimensional molecular conformation spaces. Journal of Computational Chemistry. https://dx.doi.org/10.1002/jcc.25138
Budday, D., Leyendecker, S., & van den Bedem, H. (2018). Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion. Journal of Chemical Information and Modeling, 58(10), 2108-2122. https://dx.doi.org/10.1021/acs.jcim.8b00267
Leitz, T., & Leyendecker, S. (2018). Galerkin Lie-group variational integrators based on unit quaternion interpolation. Computer Methods in Applied Mechanics and Engineering, 338, 333-361. https://dx.doi.org/10.1016/j.cma.2018.04.022


Publications in addition (Download BibTeX)

Go to first page Go to previous page 4 of 4 Go to next page Go to last page

Leyendecker, S., Betsch, P., & Steinmann, P. (2005). Conserving integration of constrained geometrically nonlinear beam dynamics. In Proceedings of the Sixth Conference on Structural Dynamics (pp. 2021-2026). Paris, France, FR.
Leyendecker, S., Betsch, P., & Steinmann, P. (2004). Mechanical integrators for constrained Hamiltonian systems. Sterzing, IT.
Leyendecker, S., Betsch, P., & Steinmann, P. (2004). Mechanical Integrators for Constrained Dynamics of Geometrically Exact Beams. In PAMM, Vol. 4 (pp. 344-345). Dresden, Germany, DE.
Steinmann, P., Betsch, P., & Leyendecker, S. (2004). Energy-conserving integration of constrained Hamiltonian systems – a comparison of approaches. Computational Mechanics, 33(3), 174-185. https://dx.doi.org/10.1007/s00466-003-0516-2
Leyendecker, S., Betsch, P., & Steinmann, P. (2003). Conserving integration schemes for constrained mechanical systems. Sydney.
Leyendecker, S. (2003). Mechanische Integratoren für zwei Arten von Gleichungen für Bewegungen mit Zwangsbedingungen. Kaiserslautern.
Lauer, S., Betsch, P., & Steinmann, P. (2003). Mechanical integrators for constrained mechanical systems. Padua, IT.

Last updated on 2019-24-04 at 10:16