Lehrstuhl für Technische Dynamik

Adresse:
Immerwahrstraße 1
91058 Erlangen


Forschungsbereiche

structure preserving simulation and optimal control
biomechanics
motion capturing
multibody dynamics and robotics


Forschungsprojekt(e)

Go to first page Go to previous page 1 von 2 Go to next page Go to last page

(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P2: Teilprojekt P2 - Atomistics of Crack-Heterogeneity Interactions
Prof. Dr.-Ing. Erik Bitzek; Prof. Dr.-Ing. Sigrid Leyendecker
(02.01.2019 - 30.06.2023)


(Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)):
GRK2423 - P9: Teilprojekt P9 - Adaptive Dynamic Fracture Simulation
Prof. Dr.-Ing. Sigrid Leyendecker; Prof. Dr. Thorsten Pöschel
(02.01.2019 - 30.06.2023)


Etablierung eines Herzunterstützungssystems basierend auf einer dem Herzbeutel nachgebildeten kontraktilen Membran
(Establishment of a heart support system as a contractile membrane based on the pericardium)
Prof. Dr.-Ing. Sigrid Leyendecker
(01.05.2016 - 31.12.2018)


(SPP 1886: Polymorphe Unschärfemodellierungen für den numerischen Entwurf von Strukturen):
Dynamic analysis of prosthetic structures with polymorphic uncertainty
Prof. Dr.-Ing. Sigrid Leyendecker
(01.01.2016 - 31.12.2019)


MKS-Menschenmodelle: Optimalsteuerung biomechanischer MKS-Menschenmodelle für Simulationsanwendungen in der virtuellen Montageplanung
(Optimal control of biomechanical MBS-Digital Human Models for simulation in the virtual assembly planning)
Prof. Dr.-Ing. Sigrid Leyendecker
(01.11.2015 - 31.10.2018)



Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 9 Go to next page Go to last page

Wenger, T., Ober-Blöbaum, S., & Leyendecker, S. (2018). Numerical properties of mixed order variational integrators applied to dynamical multirate systems. Halle, DE.
Glaas, D., & Leyendecker, S. (2018). Variational integrator based optimal feedback control for constrained mechanical systems. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik. https://dx.doi.org/10.1002/zamm.201700221
Duong, M.T., Ach, T., Alkassar, M., Dittrich, S., & Leyendecker, S. (2018). Numerical simulation of cardiac muscles in a rat biventricular model. Glasgow, GB.
Eisentraudt, M., & Leyendecker, S. (2018). Epistemic uncertainty in optimal control simulation. Mechanical Systems and Signal Processing, 121, 876-889. https://dx.doi.org/10.1016j.ymssp.2018.12.001
Leyendecker, S., & Kosmas, O. (2018). Variational integrators for orbital problems using frequency estimation. Advances in Computational Mathematics, 1-21. https://dx.doi.org/10.1007/s10444-018-9603-y
Bentaleb, T., Pham, M.T., Eberard, D., & Marquis-Favre, W. (2018). Bond graph modeling and analysis of intermediary cooling system of a nuclear power plants. Lyon, FR.
Schlögl, T. (2018). Modelling, simulation and optimal control of dielectric elastomer actuated systems (Dissertation).
Leitz, T., & Leyendecker, S. (2018). Galerkin Lie-group variational integrators based on unit quaternion interpolation. Computer Methods in Applied Mechanics and Engineering, 338, 333-361. https://dx.doi.org/10.1016/j.cma.2018.04.022
Duong, M.T., Holz, D., Ach, T., Binnewitt, S.V., Stegmann, H., Dittrich, S.,... Leyendecker, S. (2018). Simulation of cardiac electromechanics of a rat left ventricle. München, DE.
Fonseca, R., Budday, D., & van den Bedem, H. (2018). Collision-free poisson motion planning in ultra high-dimensional molecular conformation spaces. Journal of Computational Chemistry. https://dx.doi.org/10.1002/jcc.25138
Budday, D., Leyendecker, S., & van den Bedem, H. (2018). Bridging protein rigidity theory and normal modes using kino-geometric analysis. München, DE.
Leyendecker, S. (2018). Ein dynamisches Manikin mit faserbasierter Modellierung der Skelettmuskulatur.
Budday, D., Leyendecker, S., & van den Bedem, H. (2018). Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion. Journal of Chemical Information and Modeling, 58(10), 2108-2122. https://dx.doi.org/10.1021/acs.jcim.8b00267
Bentaleb, T., & Garulli, A. (2018). Model-Based Control Techniques for Turbomachinery. LAP LAMBERT Academic Publishing.
Leyendecker, S. (2018). Optimal control of human motion - biological and artificial muscles.
Phutane, U., Roller, M., & Leyendecker, S. (2018). Optimal control simulations of two finger grasping. München, DE.
Eisentraudt, M., & Leyendecker, S. (2018). Fuzzy uncertainty in forward dynamics simulation using variational integrators. München, DE.
Lomakin, K., Pavlenko, T., Sippel, M., Gold, G., Weidner, T., Helmreich, K.,... Franke, J. (2018). 3D Printed Helix Antenna. In European Conference on Antennas and Propagation (EUCAP). London, GB.
Lomakin, K., Pavlenko, T., Sippel, M., Gold, G., Helmreich, K., Ankenbrand, M.,... Franke, A. (2018). Impact of Surface Roughness on 3D printed SLS Horn Antennas. In European Conference on Antennas and Propagation (EUCAP).
Penner, J., & Leyendecker, S. (2018). Multi-obstacle muscle wrapping based on a discrete variational principle. Budapest, HU.


Zusätzliche Publikationen (Download BibTeX)

Go to first page Go to previous page 1 von 4 Go to next page Go to last page

Jung, P., Leyendecker, S., Linn, J., & Ortiz, M. (2011). A discrete mechanics approach to Cosserat rod theory - Part I: static equilibria. International Journal For Numerical Methods in Engineering, Vol. 85, 31-60. https://dx.doi.org/10.1002/nme.2950
Leyendecker, S. (2011). On optimal control simulations for mechanical systems (Habilitation).
Maas, R., Siebert, T., & Leyendecker, S. (2010). Structure preserving simulation of human finger movements. Freudenstadt-Lauterbad, DE.
Ober-Blöbaum, S., & Leyendecker, S. (2010). A Variational Approach to Multirate Integration. Mexico City, MX.
Leyendecker, S., & Maas, R. (2010). Über diskrete Mechanik und Optimalsteuerung menschlicher Fingerbewegungen. Erlangen, DE.
Kanso, E., & Leyendecker, S. (2010). Optimal locomotion of a submerged Cosserat beam. Paris, FR.
Ober-Blöbaum, S., & Leyendecker, S. (2010). A variational approach to multirate integration. Paris, FR.
Maas, R., & Leyendecker, S. (2010). Structure preserving optimal control simulation of index finger dynamics. In Proceedings of The First Joint International Conference on Multibody System Dynamics (pp. DVD). Lappeenranta, FI.
Hartmann, C., & Leyendecker, S. (2010). Event-driven molecular dynamics and nonsmooth integration. Paris, FR.
Leyendecker, S. (2010). Optimal control of multibody dynamics with uncertainties. München, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Certification with optimal control strategies. In PAMM (pp. 621-622). Karlsruhe, Germany, DE.
Leyendecker, S., & Maas, R. (2010). Structure preserving simulation of optimal index finger trajectories during grasping. In PAMM (pp. 83-84). Karlsruhe, Germany, DE.
Leyendecker, S. (2010). Structure preserving methods in computational multibody dynamics and optimal control. Kaiserslautern, DE.
Leyendecker, S., Lucas, L.J., Owhadi, H., & Ortiz, M. (2010). Optimal control strategies for robust certification. Journal of Computational and Nonlinear Dynamics, Volume 5(Number 031008), 031008. https://dx.doi.org/10.1115/1.4001375
Lang, H., & Linn, J. (2009). A multibody system type modelling approach to geometrically exact rods using geometric finite differences. Lissabon, PT.
Kanso, E., & Leyendecker, S. (2009). Locomotion of a submerged Cosserat beam. In Proceedings of the 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. (pp. DVD, 10 Seiten). San Diego, california, US.
Leyendecker, S. (2009). Discrete mechanics in space-time integration and optimal control. Göttingen, DE.
Leyendecker, S. (2009). Variational integrators in contact problems. Berlin, DE.
Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., & Ortiz, M. (2009). Discrete mechanics and optimal control for constrained systems. Optimal Control Applications & Methods, 31(Issue 6), 505-528. https://dx.doi.org/10.1002/oca.912
Leyendecker, S. (2009). Structure preserving methods in computational multibody dynamics and optimal control. Erlangen, DE.

Zuletzt aktualisiert 2019-13-02 um 08:42