Sill M, Schrimpf D, Patel A, Sturm D, Jäger N, Sievers P, Schweizer L, Banan R, Reuss D, Suwala A, Korshunov A, Stichel D, Wefers AK, Hau AC, Boldt H, Harter PN, Abdullaev Z, Benhamida J, Teichmann D, Koch A, Hench J, Frank S, Hasselblatt M, Mansouri S, Díaz de Ståhl T, Serrano J, Ecker J, Selt F, Taylor M, Ramaswamy V, Cavalli F, Berghoff AS, Bison B, Blattner-Johnson M, Buchhalter I, Buslei R, Calaminus G, Dikow N, Dohmen H, Euskirchen P, Fleischhack G, Gajjar A, Gerber NU, Gessi M, Gielen GH, Gnekow A, Gottardo NG, Haberler C, Hamelmann S, Hans V, Hansford JR, Hartmann C, Heppner FL, Driever PH, von Hoff K, Thomale UW, Tippelt S, Frühwald MC, Kramm CM, Schüller U, Schittenhelm J, Schuhmann MU, Stein M, Ketteler P, Ladanyi M, Jabado N, Jones BC, Jones C, Karajannis MA, Ketter R, Kohlhof P, Kordes U, Reinhardt A, Kölsche C, Lamszus K, Lichter P, Maas SL, Mawrin C, Milde T, Mittelbronn M, Monoranu CM, Mueller W, Mynarek M, Northcott PA, Pajtler KW, Paulus W, Perry A, Blümcke I, Plate KH, Platten M, Preusser M, Pietsch T, Prinz M, Reifenberger G, Kristensen BW, Kool M, Hovestadt V, Ellison DW, Jacques TS, Varlet P, Etminan N, Acker T, Weller M, White CL, Witt O, Herold-Mende C, Debus J, Krieg S, Wick W, Snuderl M, Aldape K, Brandner S, Hawkins C, Horbinski C, Thomas C, Wesseling P, von Deimling A, Capper D, Pfister SM, Jones DT, Sahm F (2026)
Publication Type: Journal article
Publication year: 2026
Book Volume: 44
Pages Range: 340-354.e2
Journal Issue: 2
DOI: 10.1016/j.ccell.2025.11.002
DNA methylation-based classification is now central to contemporary neuro-oncology, as highlighted by the World Health Organization (WHO) classification of central nervous system (CNS) tumors. We present the Heidelberg CNS Tumor Methylation Classifier version 12.8 (v12.8), trained on 7,495 methylation profiles, which expands recognized entities from 91 classes in version 11 (v11) to 184 subclasses. This expansion is a result of newly identified tumor types discovered through our large online repository and global collaborations, underscoring CNS tumor heterogeneity. The random forest-based classifier achieves 95% subclass-level accuracy, with its well-calibrated probabilistic scores providing a reliable measure of confidence for each classification. Its hierarchical output structure enables interpretation across subclass, class, family, and superfamily levels, thereby supporting clinical decisions at multiple granularities. Comparative analyses demonstrate that v12.8 surpasses previous versions and conventional WHO-based approaches. These advances highlight the improved precision and practical utility of the updated classifier in personalized neuro-oncology.
APA:
Sill, M., Schrimpf, D., Patel, A., Sturm, D., Jäger, N., Sievers, P.,... Sahm, F. (2026). Advancing CNS tumor diagnostics with expanded DNA methylation-based classification. Cancer Cell, 44(2), 340-354.e2. https://doi.org/10.1016/j.ccell.2025.11.002
MLA:
Sill, Martin, et al. "Advancing CNS tumor diagnostics with expanded DNA methylation-based classification." Cancer Cell 44.2 (2026): 340-354.e2.
BibTeX: Download