Solution ALD of (CH3NH3)(PbI3) Perovskite Thin Films Yields Functional Quality and Stability Superior to Classical Processing

Koch V, Zeng X, Deckert A, Büttner P, Franz E, Ding F, Anderson MA, Zhang J, Kupfer C, Mack E, Ambasta VK, Duchstein P, Dehm K, Furxhiu S, Zahl A, Frisch J, Hoga F, Stubhan T, Wilks RG, Peng Z, Brummel O, Crisp R, Zahn D, Müller C, Guldi DM, Bär M, Wisser D, Libuda J, Brabec C, Bachmann J (2025)


Publication Type: Journal article

Publication year: 2025

Journal

Article Number: e13903

DOI: 10.1002/anie.202513903

Abstract

Atomic-level control of solution-processed hybrid halide perovskites is achieved experimentally by solution atomic layer deposition (sALD). This method transfers the surface chemical principles of gas-phase ALD (gALD) to precursors dissolved in the liquid phase. Circumventing limitations associated with precursor volatility, sALD broadens the portfolio of reaction chemistries usable and material classes accessible. We establish its applicability to depositing ultrathin films of ionic semiconductors by developing an sALD procedure for the most prominent halide perovskite, methylammonium triiodoplumbate (CH3NH3PbI3, ‘MAPI‘). The process saturates upon precursor dosage variation to self-limiting growth typical for ALD, as analyzed by ex-situ and in-situ techniques. sALD-deposited MAPI is highly pure, stoichiometric, and polycrystalline. When MAPI films are prepared in congruent pairs by sALD and by a state-of-the-art spin-coating method, sALD-grown films clearly outperform their spin-coated counterparts in terms of charge carrier lifetimes and stability. They exhibit high carrier mobility and yield functional light absorbing layers in solar cells.

Authors with CRIS profile

Vanessa Koch Lehrstuhl für Chemistry of thin film materials Xinyi Zeng Lehrstuhl für Chemistry of thin film materials Andreas Deckert Lehrstuhl für Chemistry of thin film materials Pascal Büttner Lehrstuhl für Chemistry of thin film materials Evanie Franz Lehrstuhl für Katalytische Grenzflächenforschung Fei Ding Professur für Katalyse Jiyun Zhang Institute Materials for Electronics and Energy Technology (i-MEET) Christian Kupfer Institute Materials for Electronics and Energy Technology (i-MEET) Elena Mack Lehrstuhl für Physikalische Chemie I Patrick Duchstein Department Chemie und Pharmazie Katharina Dehm Lehrstuhl für Chemistry of thin film materials Stevie Furxhiu Professur für Physikalische Chemie Achim Zahl Lehrstuhl für Chemistry of thin film materials Tobias Stubhan Institute Materials for Electronics and Energy Technology (i-MEET) Zijian Peng Institute Materials for Electronics and Energy Technology (i-MEET) Olaf Brummel Lehrstuhl für Katalytische Grenzflächenforschung Ryan Crisp Lehrstuhl für Chemistry of thin film materials Dirk Zahn Professur für Theoretische Chemie Carolin Müller Juniorprofessur für die Theorie elektronisch angeregter Zustände Dirk Michael Guldi Lehrstuhl für Physikalische Chemie I Marcus Bär Professur für Röntgenspektroskopie (HIERN) Dorothea Wisser Professur für Katalyse Jörg Libuda Lehrstuhl für Katalytische Grenzflächenforschung Christoph Brabec Institute Materials for Electronics and Energy Technology (i-MEET) Julien Bachmann Lehrstuhl für Chemistry of thin film materials

Involved external institutions

How to cite

APA:

Koch, V., Zeng, X., Deckert, A., Büttner, P., Franz, E., Ding, F.,... Bachmann, J. (2025). Solution ALD of (CH3NH3)(PbI3) Perovskite Thin Films Yields Functional Quality and Stability Superior to Classical Processing. Angewandte Chemie International Edition. https://doi.org/10.1002/anie.202513903

MLA:

Koch, Vanessa, et al. "Solution ALD of (CH3NH3)(PbI3) Perovskite Thin Films Yields Functional Quality and Stability Superior to Classical Processing." Angewandte Chemie International Edition (2025).

BibTeX: Download