Su TY, Hu S, Wang X, Adler S, Wagstyl K, Ding Z, Choi JY, Sakaie K, Blümcke I, Murakami H, Alexopoulos AV, Jones SE, Najm I, Ma D, Wang ZI (2025)
Publication Type: Journal article
Publication year: 2025
DOI: 10.1111/epi.18667
Objective: This study was undertaken to develop a framework for focal cortical dysplasia (FCD) detection using surface-based morphometric (SBM) analysis and machine learning (ML) applied to three-dimensional (3D) magnetic resonance fingerprinting (MRF). Methods: We included 114 subjects (44 patients with medically intractable focal epilepsy and FCD, 70 healthy controls [HCs]). All subjects underwent high-resolution 3-T MRF scans generating T1 and T2 maps. All patients had clinical T1-weighted (T1w) images; 35 also had 3D fluid-attenuated inversion recovery (FLAIR). A 3D region of interest (ROI) was manually created for each lesion. All maps/images and lesion ROIs were registered to T1w images. Surface-based features were extracted following the Multi-center Epilepsy Lesion Detection pipeline. Features were normalized using intrasubject, interhemispheric, and intersubject z-scoring. A two-stage ML approach was applied: a vertexwise neural network classifier for lesional versus normal vertices using T1w/MRF/FLAIR features, followed by a clusterwise Random Undersampling Boosting classifier to suppress false positives (FPs) based on cluster size, prediction probabilities, and feature statistics. Leave-one-out cross-validation was performed at both stages. Results: Using T1w features, sensitivity was 70.4% with 11.6 FP clusters/patient and 4.1 in HCs. Adding MRF reduced FPs to 6.6 clusters/patient and 1.5 in HCs, with 68.2% sensitivity. Combining T1w, MRF, and FLAIR achieved 71.4% sensitivity, with 4.7 FPs/patient and 1.1 in HCs. Detection probabilities were significantly higher for true positive clusters than FPs (p <.001). Type II showed higher detection rates than non-type II. Magnetic resonance imaging (MRI)-positive patients showed higher detection rates and fewer FPs than MRI-negative patients. Seizure-free patients demonstrated higher detection rates than non-seizure-free patients. Subtyping accuracy was 80.8% for non-type II versus type II, and 68.4% for IIa versus IIb, although limited by small sample size. The transmantle sign was present in 61.5% of IIb and 40% of IIa cases. Significance: We developed an ML framework for FCD detection integrating SBM with clinical MRI and MRF. Advances include improved FP control and enhanced subtyping; selected model outputs may provide indicators of detection confidence and seizure outcome.
APA:
Su, T.Y., Hu, S., Wang, X., Adler, S., Wagstyl, K., Ding, Z.,... Wang, Z.I. (2025). Surfaced-based detection of focal cortical dysplasia using magnetic resonance fingerprinting and machine learning. Epilepsia. https://doi.org/10.1111/epi.18667
MLA:
Su, Ting Yu, et al. "Surfaced-based detection of focal cortical dysplasia using magnetic resonance fingerprinting and machine learning." Epilepsia (2025).
BibTeX: Download