Myoelectric grip force prediction using deep learning for hand robot

Anam K, Ardhiansyah DD, Sasono MAH, Mujibtamala Nanda Imron A, Rizal NA, Ramadhan ME, Muttaqin AZ, Castellini C, Sumardi S (2025)


Publication Type: Journal article

Publication year: 2025

Journal

Book Volume: 14

Pages Range: 3228

Issue: 4

DOI: 10.11591/ijai.v14.i4.pp3228-3240

Abstract

Artificial  intelligence (AI) has  been  widely  applied  in  the  medical  world. One  such   application  is  a   hand-driven   robot   based   on   user  intention prediction.  The purpose  of this  research  is  to  control the  grip  strength  of  a robot based on the user’s intention by predicting the grip strength of the user using deep learning and electromyographic signals. The grip strength of the target   hand   is   obtained   from   a   handgrip   dynamometer   paired   with electromyographic  signals  as  training  data.  We  evaluated  a  convolutional neural  network  (CNN)  with  two  different  architectures.  The  input  to  CNN was the root mean square (RMS) and mean absolute value (MAV). The grip strength of the hand dynamometer was used as a reference value for a low-level  controller  for  the  robotic  hand.  The  experimental  results  show  that CNN  succeeded  in  predicting  hand  grip  strength  and  controlling  grip strength  with aroot  mean  square  error(RMSE)of  2.35  N  using  the  RMS feature. A comparison with a state-of-the-art regression method also shows that a CNN can better predict the grip strength.

Involved external institutions

How to cite

APA:

Anam, K., Ardhiansyah, D.D., Sasono, M.A.H., Mujibtamala Nanda Imron, A., Rizal, N.A., Ramadhan, M.E.,... Sumardi, S. (2025). Myoelectric grip force prediction using deep learning for hand robot. IAES International Journal of Artificial Intelligence (IJ-AI), 14, 3228. https://doi.org/10.11591/ijai.v14.i4.pp3228-3240

MLA:

Anam, Khairul, et al. "Myoelectric grip force prediction using deep learning for hand robot." IAES International Journal of Artificial Intelligence (IJ-AI) 14 (2025): 3228.

BibTeX: Download