Hernandez A, Arias-Vergara T, Maier A, Perez Toro PA (2025)
Publication Type: Conference contribution
Publication year: 2025
Publisher: Springer Science and Business Media Deutschland GmbH
Book Volume: 16030 LNAI
Pages Range: 153-164
Conference Proceedings Title: Lecture Notes in Computer Science
Event location: Erlangen, DEU
ISBN: 9783032025500
DOI: 10.1007/978-3-032-02551-7_14
Automatic speech recognition (ASR) systems often struggle with dysarthric speech, particularly from individuals with neurodegenerative conditions such as Parkinson’s disease. Addressing this challenge, we explore the use of instruction-tuned large language models (LLMs) for ASR error correction. Our approach uses zero-shot prompting with only the 1-best greedy ASR output. Using speech data from the Speech Accessibility Project, we fine-tune a 250M parameter Flan-T5 model to improve transcription accuracy for dysarthric speakers. Evaluation against raw outputs from multiple open-source ASR systems demonstrates notable improvements in correction quality. We further assess larger models, such as the 8B parameter LLaMA 3.1 model, and observe additional gains with minimal hyperparameter tuning. These results highlight the potential of LLM-based correction to enhance ASR accessibility for individuals with speech impairments.
APA:
Hernandez, A., Arias-Vergara, T., Maier, A., & Perez Toro, P.A. (2025). Enhancing ASR Accuracy for Speakers with Parkinson’s Disease Using Instruction-Tuned LLMs. In Kamil Ekštein, Miloslav Konopík, Ondrej Pražák, František Pártl (Eds.), Lecture Notes in Computer Science (pp. 153-164). Erlangen, DEU: Springer Science and Business Media Deutschland GmbH.
MLA:
Hernandez, Abner, et al. "Enhancing ASR Accuracy for Speakers with Parkinson’s Disease Using Instruction-Tuned LLMs." Proceedings of the 28th International Conference on Text, Speech, and Dialogue, TSD 2025, Erlangen, DEU Ed. Kamil Ekštein, Miloslav Konopík, Ondrej Pražák, František Pártl, Springer Science and Business Media Deutschland GmbH, 2025. 153-164.
BibTeX: Download