Chanda T, Haggenmueller S, Bucher TC, Holland-Letz T, Kittler H, Tschandl P, Heppt M, Berking C, Utikal JS, Schilling B, Buerger C, Navarrete-Dechent C, Goebeler M, Kather JN, Schneider CV, Durani B, Durani H, Jansen M, Wacker J, Wacker J, Kalski M, Klifo D, Kiefer S, Klifo H, Funk T, Lunderstedt J, Buchinger A, Erdogdu U, Weberschock T, Gosmann J, Sachweizer A, Loos S, Fahimi S, Christ F, Dionysia D, Yilmaz K, Ninosu N, Schaarschmidt ML, Baumert J, Sackmann T, Rabe L, Höner M, Zieringer L, Uebel C, Breakell T, Sagonas I, Bosch-Voskens C, Sollfrank L, Ronicke M, Kemenes S, Sambale J, Wagner N, Erdmann M, Ammar AM, Manuelyan K, Salerni G, Rácz E, Saa SR, Hoorens I, Salava A, Lengyel Z, Balcere A, Jocic I, Zafirovik Z, Dragolov M, Hudson S, Cenk H, Tsakiri A, Petrovska L, Neto RRO, Ferhatosmanoğlu A, Morales-Sánchez MA, Bondare-Ansberga V, Afiouni R, Erdil DI, Beyens A, Lluch-Galcerá JJ, Vucemilovic AS, Theofilogiannakou P, Sławińska M, Garzona-Navas L, Hartmann D, Ludwig-Peitsch W, Thamm J, Pföhler C, Hoffmann F, Maul JT, Nguyen VA, Braun SA, Gössinger E, Mühleisen B, Feldmeyer L, Bechara FG, Schuh S, Reimer-Taschenbrecker A, Maul LV, Dimitriou F, Persa OD, Welzel J, Ahlgrimm-Siess V, Booken N, Brinker TJ (2025)
Publication Type: Journal article
Publication year: 2025
Book Volume: 16
Article Number: 4739
DOI: 10.1038/s41467-025-59532-5
Artificial intelligence (AI) systems substantially improve dermatologists’ diagnostic accuracy for melanoma, with explainable AI (XAI) systems further enhancing their confidence and trust in AI-driven decisions. Despite these advancements, there remains a critical need for objective evaluation of how dermatologists engage with both AI and XAI tools. In this study, 76 dermatologists participate in a reader study, diagnosing 16 dermoscopic images of melanomas and nevi using an XAI system that provides detailed, domain-specific explanations, while eye-tracking technology assesses their interactions. Diagnostic performance is compared with that of a standard AI system lacking explanatory features. Here we show that XAI significantly improves dermatologists’ diagnostic balanced accuracy by 2.8 percentage points compared to standard AI. Moreover, diagnostic disagreements with AI/XAI systems and complex lesions are associated with elevated cognitive load, as evidenced by increased ocular fixations. These insights have significant implications for the design of AI/XAI tools for visual tasks in dermatology and the broader development of XAI in medical diagnostics.
APA:
Chanda, T., Haggenmueller, S., Bucher, T.C., Holland-Letz, T., Kittler, H., Tschandl, P.,... Brinker, T.J. (2025). Dermatologist-like explainable AI enhances melanoma diagnosis accuracy: eye-tracking study. Nature Communications, 16. https://doi.org/10.1038/s41467-025-59532-5
MLA:
Chanda, Tirtha, et al. "Dermatologist-like explainable AI enhances melanoma diagnosis accuracy: eye-tracking study." Nature Communications 16 (2025).
BibTeX: Download