Dermatologist-like explainable AI enhances melanoma diagnosis accuracy: eye-tracking study

Chanda T, Haggenmueller S, Bucher TC, Holland-Letz T, Kittler H, Tschandl P, Heppt M, Berking C, Utikal JS, Schilling B, Buerger C, Navarrete-Dechent C, Goebeler M, Kather JN, Schneider CV, Durani B, Durani H, Jansen M, Wacker J, Wacker J, Kalski M, Klifo D, Kiefer S, Klifo H, Funk T, Lunderstedt J, Buchinger A, Erdogdu U, Weberschock T, Gosmann J, Sachweizer A, Loos S, Fahimi S, Christ F, Dionysia D, Yilmaz K, Ninosu N, Schaarschmidt ML, Baumert J, Sackmann T, Rabe L, Höner M, Zieringer L, Uebel C, Breakell T, Sagonas I, Bosch-Voskens C, Sollfrank L, Ronicke M, Kemenes S, Sambale J, Wagner N, Erdmann M, Ammar AM, Manuelyan K, Salerni G, Rácz E, Saa SR, Hoorens I, Salava A, Lengyel Z, Balcere A, Jocic I, Zafirovik Z, Dragolov M, Hudson S, Cenk H, Tsakiri A, Petrovska L, Neto RRO, Ferhatosmanoğlu A, Morales-Sánchez MA, Bondare-Ansberga V, Afiouni R, Erdil DI, Beyens A, Lluch-Galcerá JJ, Vucemilovic AS, Theofilogiannakou P, Sławińska M, Garzona-Navas L, Hartmann D, Ludwig-Peitsch W, Thamm J, Pföhler C, Hoffmann F, Maul JT, Nguyen VA, Braun SA, Gössinger E, Mühleisen B, Feldmeyer L, Bechara FG, Schuh S, Reimer-Taschenbrecker A, Maul LV, Dimitriou F, Persa OD, Welzel J, Ahlgrimm-Siess V, Booken N, Brinker TJ (2025)


Publication Type: Journal article

Publication year: 2025

Journal

Book Volume: 16

Article Number: 4739

DOI: 10.1038/s41467-025-59532-5

Abstract

Artificial intelligence (AI) systems substantially improve dermatologists’ diagnostic accuracy for melanoma, with explainable AI (XAI) systems further enhancing their confidence and trust in AI-driven decisions. Despite these advancements, there remains a critical need for objective evaluation of how dermatologists engage with both AI and XAI tools. In this study, 76 dermatologists participate in a reader study, diagnosing 16 dermoscopic images of melanomas and nevi using an XAI system that provides detailed, domain-specific explanations, while eye-tracking technology assesses their interactions. Diagnostic performance is compared with that of a standard AI system lacking explanatory features. Here we show that XAI significantly improves dermatologists’ diagnostic balanced accuracy by 2.8 percentage points compared to standard AI. Moreover, diagnostic disagreements with AI/XAI systems and complex lesions are associated with elevated cognitive load, as evidenced by increased ocular fixations. These insights have significant implications for the design of AI/XAI tools for visual tasks in dermatology and the broader development of XAI in medical diagnostics.

Authors with CRIS profile

Involved external institutions

Universitätsklinikum Mannheim / University Medical Centre Mannheim (Universitätsmedizin Mannheim) DE Germany (DE) Al-Azhar University EG Egypt (EG) Universitätsspital Basel CH Switzerland (CH) Luzerner Kantonsspital (LUKS) CH Switzerland (CH) Ruhr-Universität Bochum (RUB) DE Germany (DE) Universitätsklinikum Augsburg DE Germany (DE) Northwestern University US United States (USA) (US) Universitätsspital Zürich (USZ) CH Switzerland (CH) Deutsches Krebsforschungszentrum (DKFZ) DE Germany (DE) Medizinische Universität Wien AT Austria (AT) Universitätsklinikum Frankfurt am Main (KGU) DE Germany (DE) Universitätsklinikum Würzburg DE Germany (DE) Universitätsklinikum Aachen (UKA) DE Germany (DE) Universidad Nacional de Rosario (UNR) AR Argentina (AR) University Medical Center Groningen (UMCG) / Universitair Medisch Centrum Groningen NL Netherlands (NL) University Hospital Ghent BE Belgium (BE) Helsinki University Central Hospital (HUCH) / Helsingin seudun yliopistollinen keskussairaala (HYKS) FI Finland (FI) University of Pécs / Pécsi Tudományegyetem HU Hungary (HU) Rīga Stradiņš University LV Latvia (LV) Military Medical Academy (Serbia) / Војномедицинска академија / Vojnomedicinska akademija (VMA) RS Serbia (RS) Saints Cyril and Methodius University of Skopje / Универзитет „Св. Кирил и Методиј“ во Скопје MK Republic of North Macedonia (MK) Pamukkale University / Pamukkale Üniversitesi (PAU) TR Turkey (TR) Public Health Institution Clinical Hospital-Shtip / Јавна Здравствена Установа Клиничка Болница - Штип MK Republic of North Macedonia (MK) Universidade Federal de Mato Grosso do Sul BR Brazil (BR) Karadeniz Technical University / Karadeniz Teknik Üniversitesi (KTU) TR Turkey (TR) Riga 1st hospital / Rīgas 1. slimnīca LV Latvia (LV) Taksim Eğitim ve Araştırma Hastanesi TR Turkey (TR) Health Sciences Research Institute of the “Germans Trias i Pujol” Foundation (IGTP) ES Spain (ES) University Hospital Split HR Croatia (HR) Universitätskliniken Salzburg AT Austria (AT) Evangelismos Medical Center GR Greece (GR) Medical University Gdansk / Gdański Uniwersytet Medyczny PL Poland (PL) Hospital Clínica Bíblica CR Costa Rica (CR) München Klinik gGmbH DE Germany (DE) Vivantes - Netzwerk für Gesundheit GmbH DE Germany (DE) Universitätsklinikum des Saarlandes (UKS) DE Germany (DE) Universitätsklinikum Bonn DE Germany (DE) Universitätsklinikum Münster DE Germany (DE) Technische Universität München (TUM) DE Germany (DE) Universitätsklinikum Hamburg-Eppendorf (UKE) DE Germany (DE)

How to cite

APA:

Chanda, T., Haggenmueller, S., Bucher, T.C., Holland-Letz, T., Kittler, H., Tschandl, P.,... Brinker, T.J. (2025). Dermatologist-like explainable AI enhances melanoma diagnosis accuracy: eye-tracking study. Nature Communications, 16. https://doi.org/10.1038/s41467-025-59532-5

MLA:

Chanda, Tirtha, et al. "Dermatologist-like explainable AI enhances melanoma diagnosis accuracy: eye-tracking study." Nature Communications 16 (2025).

BibTeX: Download