Krüger T, Renfrew D (2025)
Publication Type: Journal article
Publication year: 2025
Book Volume: 61
Pages Range: 1416-1442
Journal Issue: 2
DOI: 10.1214/24-AIHP1464
We consider the density of states of structured Hermitian random matrices with a variance profile. As the dimension tends to infinity the associated eigenvalue density can develop a singularity at the origin. The severity of this singularity depends on the relative positions of the zero submatrices. We provide a classification of all possible singularities and determine the exponent in the density blow-up, which we label the singularity degree.
APA:
Krüger, T., & Renfrew, D. (2025). Singularity degree of structured random matrices. Annales de l'Institut Henri Poincaré - Probabilités Et Statistiques, 61(2), 1416-1442. https://doi.org/10.1214/24-AIHP1464
MLA:
Krüger, Torben, and David Renfrew. "Singularity degree of structured random matrices." Annales de l'Institut Henri Poincaré - Probabilités Et Statistiques 61.2 (2025): 1416-1442.
BibTeX: Download