Tailoring ultra-small ZnO nanoparticles through cobalt doping to enhance photocatalytic CO2 reduction

Yang WZ, ULLAH I, Jiang ZG, Neder R, Zhan CH (2025)


Publication Type: Journal article

Publication year: 2025

Journal

Book Volume: 15

Pages Range: 11934-11941

Journal Issue: 15

DOI: 10.1039/d5ra01374g

Abstract

Photocatalytic CO2 reduction offers a promising pathway for achieving sustainable development. However, the effectiveness of this method faces challenges related to imbalanced charge transfer/utilization. To address these issues, this paper reports on cobalt-doped zinc oxide nanoparticles (Co-ZnO NPs). The cobalt doping not only increases light absorption but also improves charge transfer/separation kinetics and modulates the reduction reaction dynamics. Notably, photocatalytic tests show that cobalt-doped zinc oxide (Co-ZnO) achieves a CO yield of 143.90 μmol g−1 h−1, which is 15.73 times higher than that of undoped ZnO, and exhibits excellent stability. This study emphasizes the importance of polarization states induced by doping for achieving efficient charge separation, providing a new approach to enhance the efficiency of photoredox catalysis.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Yang, W.Z., ULLAH, I., Jiang, Z.G., Neder, R., & Zhan, C.H. (2025). Tailoring ultra-small ZnO nanoparticles through cobalt doping to enhance photocatalytic CO2 reduction. RSC Advances, 15(15), 11934-11941. https://doi.org/10.1039/d5ra01374g

MLA:

Yang, Wen Zhu, et al. "Tailoring ultra-small ZnO nanoparticles through cobalt doping to enhance photocatalytic CO2 reduction." RSC Advances 15.15 (2025): 11934-11941.

BibTeX: Download