George A, Schreiter H, Hoßbach J, Nguyen TT, Horishnyi I, Ehring C, Heidarikahkesh S, Kapsner L, Laun FB, Uder M, Ohlmeyer S, Bickelhaupt S, Liebert A (2025)
Publication Language: English
Publication Type: Conference contribution
Publication year: 2025
Publisher: Springer
Series: Informatik aktuell
City/Town: Cham
Pages Range: 277-282
Conference Proceedings Title: Bildverarbeitung für die Medizin 2025. Proceedings, German Conference on Medical Image Computing, Regensburg March 09-11, 2025
ISBN: 9783658474218
DOI: 10.1007/978-3-658-47422-5_63
Multiparametric MRI with gadolinium-based contrast agents demonstrates high sensitivity for detecting lesions in the breast, particularly in women with denser breast tissue. However, its use is limited by increased costs, time and contraindications in certain patients. This study explores a pix2pix generative adversarial network (GAN) to create virtual contrast-enhanced (vCE) MRI from un-enhanced T1w, T2w, and DWI sequences and compares it with a U-Net model. The vCE GAN achieved an SSIM of 80.75 and PSNR of 21.90, while the vCE U-Net scored 87.39 and 24.39, respectively. A multi-reader Turing test showed that 45.89% of vCE GAN images were rated as real, comparable to 45.09% for true CE images. In contrast, 47.25% of vCE U-Net images were rated as real.
APA:
George, A., Schreiter, H., Hoßbach, J., Nguyen, T.-T., Horishnyi, I., Ehring, C.,... Liebert, A. (2025). U-Net and GAN for Virtual Contrast in Breast MRI: How Do They Compare to Real Contrast Images? In Christoph Palm, Katharina Breininger, Thomas Deserno, Heinz Handels, Andreas Maier, Klaus H. Maier-Hein, Thomas M. Tolxdorff (Eds.), Bildverarbeitung für die Medizin 2025. Proceedings, German Conference on Medical Image Computing, Regensburg March 09-11, 2025 (pp. 277-282). Regensburg, DE: Cham: Springer.
MLA:
George, Aju, et al. "U-Net and GAN for Virtual Contrast in Breast MRI: How Do They Compare to Real Contrast Images?" Proceedings of the German Conference on Medical Image Computing, 2025, Regensburg Ed. Christoph Palm, Katharina Breininger, Thomas Deserno, Heinz Handels, Andreas Maier, Klaus H. Maier-Hein, Thomas M. Tolxdorff, Cham: Springer, 2025. 277-282.
BibTeX: Download