Ordinary modules for vertex algebras of osp1|2n

Creutzig T, Genra N, Linshaw A (2024)


Publication Type: Journal article

Publication year: 2024

Journal

Book Volume: 2024

Pages Range: 1-31

Journal Issue: 817

DOI: 10.1515/crelle-2024-0060

Abstract

We show that the affine vertex superalgebra Vk(osp1|2n) at generic level k embeds in the equivariant W-algebra of sp2n times 4n free fermions. This has two corollaries: (1) it provides a new proof that, for generic k, the coset Com(Vk(sp2n), Vk(osp1|2n)) is isomorphic to (Wl(sp2n) for l = -(n + 1) + (k + n + 1)=(2k + 2n + 1), and (2) we obtain the decomposition of ordinary Vk (osp1|2n)-modules into Vk(sp2n) ⊗ Wl(sp2n)-modules. Next, if k is an admissible level and is a non-degenerate admissible level for sp2n, we show that the simple algebra Lk(osp1|2n) is an extension of the simple subalgebra Lk(sp2n) ⊗ Wl(sp2n). Using the theory of vertex superalgebra extensions, we prove that the category of ordinary Lk(osp1/2n)-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects. It is equivalent to a certain subcategory of Wl(sp2n)-modules. A similar result also holds for the category of Ramond twisted modules. Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary Lk(sp2n)-modules are rigid.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Creutzig, T., Genra, N., & Linshaw, A. (2024). Ordinary modules for vertex algebras of osp1|2n. Journal für die reine und angewandte Mathematik, 2024(817), 1-31. https://doi.org/10.1515/crelle-2024-0060

MLA:

Creutzig, Thomas, Naoki Genra, and Andrew Linshaw. "Ordinary modules for vertex algebras of osp1|2n." Journal für die reine und angewandte Mathematik 2024.817 (2024): 1-31.

BibTeX: Download