A Deep Discontinuity-Preserving Image Registration Network

Chen X, Xia Y, Ravikumar N, Frangi AF (2021)


Publication Type: Conference contribution

Publication year: 2021

Journal

Publisher: Springer Science and Business Media Deutschland GmbH

Book Volume: 12904 LNCS

Pages Range: 46-55

Conference Proceedings Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Event location: Virtual, Online

ISBN: 9783030872014

DOI: 10.1007/978-3-030-87202-1_5

Abstract

Image registration aims to establish spatial correspondence across pairs, or groups of images, and is a cornerstone of medical image computing and computer-assisted-interventions. Currently, most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous, which is not always valid for real-world scenarios, especially in medical image registration (e.g. cardiac imaging and abdominal imaging). Such a global constraint can lead to artefacts and increased errors at discontinuous tissue interfaces. To tackle this issue, we propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR), to obtain better registration performance and realistic deformation fields. We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images from UK Biobank Imaging Study (UKBB), than state-of-the-art approaches.

Involved external institutions

How to cite

APA:

Chen, X., Xia, Y., Ravikumar, N., & Frangi, A.F. (2021). A Deep Discontinuity-Preserving Image Registration Network. In Marleen de Bruijne, Marleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 46-55). Virtual, Online: Springer Science and Business Media Deutschland GmbH.

MLA:

Chen, Xiang, et al. "A Deep Discontinuity-Preserving Image Registration Network." Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021, Virtual, Online Ed. Marleen de Bruijne, Marleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert, Springer Science and Business Media Deutschland GmbH, 2021. 46-55.

BibTeX: Download