Transfer matrix analysis of non-Hermitian Hamiltonians: asymptotic spectra and topological eigenvalues

Koekenbier L, Schulz-Baldes H (2024)


Publication Type: Journal article

Publication year: 2024

Journal

Book Volume: 14

Pages Range: 1563-1622

Journal Issue: 4

DOI: 10.4171/JST/524

Abstract

Transfer matrix techniques are used to provide a new proof of Widom’s results on the asymptotic spectral theory of finite block Toeplitz matrices. Furthermore, a rigorous treatment of the skin effect, spectral outliers, the generalized Brillouin zone and the bulk-boundary correspondence in such systems is given. This covers chiral Hamiltonians with topological eigenvalues close to zero, but no line-gap.

Authors with CRIS profile

How to cite

APA:

Koekenbier, L., & Schulz-Baldes, H. (2024). Transfer matrix analysis of non-Hermitian Hamiltonians: asymptotic spectra and topological eigenvalues. Journal of Spectral Theory, 14(4), 1563-1622. https://doi.org/10.4171/JST/524

MLA:

Koekenbier, Lars, and Hermann Schulz-Baldes. "Transfer matrix analysis of non-Hermitian Hamiltonians: asymptotic spectra and topological eigenvalues." Journal of Spectral Theory 14.4 (2024): 1563-1622.

BibTeX: Download