Tensor category KLk(sl2n) via minimal affine W-algebras at the non-admissible level k=−[Formula presented]
Adamović D, Creutzig T, Perše O, Vukorepa I (2024)
Publication Type: Journal article
Publication year: 2024
Journal
Book Volume: 228
Article Number: 107565
Journal Issue: 5
DOI: 10.1016/j.jpaa.2023.107565
Abstract
We prove that the Kazhdan-Lusztig category of slˆm at level k, KLk(slm), is a semi-simple, rigid braided tensor category for all even m≥4, and k=−[Formula presented]. Moreover, all modules in KLk(slm) are simple-currents and they appear in the decomposition of conformal embeddings glm↪slm+1 at level k=−[Formula presented]. For this we inductively identify minimal affine W-algebra Wk−1(slm+2,θ) as simple current extension of Lk(slm)⊗H⊗M, where H is the rank one Heisenberg vertex algebra, and M the singlet vertex algebra for c=−2. The proof uses previously obtained results for the tensor categories of singlet algebra. We also classify all irreducible ordinary modules for Wk−1(slm+2,θ). The semi-simple part of the category of Wk−1(slm+2,θ)–modules comes from KLk−1(slm+2), using quantum Hamiltonian reduction, but this W-algebra also contains indecomposable ordinary modules.
Authors with CRIS profile
Involved external institutions
How to cite
APA:
Adamović, D., Creutzig, T., Perše, O., & Vukorepa, I. (2024). Tensor category KLk(sl2n) via minimal affine W-algebras at the non-admissible level k=−[Formula presented]. Journal of Pure and Applied Algebra, 228(5). https://doi.org/10.1016/j.jpaa.2023.107565
MLA:
Adamović, Dražen, et al. "Tensor category KLk(sl2n) via minimal affine W-algebras at the non-admissible level k=−[Formula presented]." Journal of Pure and Applied Algebra 228.5 (2024).
BibTeX: Download