Catalyst durability in electrocatalytic H2O2 production: key factors and challenges

Choi JS, Fortunato GV, Jung DC, Lourenço JC, Lanza MR, Ledendecker M (2024)


Publication Type: Journal article, Review article

Publication year: 2024

Journal

DOI: 10.1039/d4nh00109e

Abstract

On-demand electrocatalytic hydrogen peroxide (H2O2) production is a significant technological advancement that offers a promising alternative to the traditional anthraquinone process. This approach leverages electrocatalysts for the selective reduction of oxygen through a two-electron transfer mechanism (ORR-2e), holding great promise for delivering a sustainable and economically efficient means of H2O2 production. However, the harsh operating conditions during the electrochemical H2O2 production lead to the degradation of both structural integrity and catalytic efficacy in these materials. Here, we systematically examine the design strategies and materials typically utilized in the electroproduction of H2O2 in acidic environments. We delve into the prevalent reactor conditions and scrutinize the factors contributing to catalyst deactivation. Additionally, we propose standardised benchmarking protocols aimed at evaluating catalyst stability under such rigorous conditions. To this end, we advocate for the adoption of three distinct accelerated stress tests to comprehensively assess catalyst performance and durability.

Involved external institutions

How to cite

APA:

Choi, J.S., Fortunato, G.V., Jung, D.C., Lourenço, J.C., Lanza, M.R., & Ledendecker, M. (2024). Catalyst durability in electrocatalytic H2O2 production: key factors and challenges. Nanoscale Horizons. https://doi.org/10.1039/d4nh00109e

MLA:

Choi, Ji Sik, et al. "Catalyst durability in electrocatalytic H2O2 production: key factors and challenges." Nanoscale Horizons (2024).

BibTeX: Download